Metamath Proof Explorer


Theorem vdwlem10

Description: Lemma for vdw . Set up secondary induction on M . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdw.r φ R Fin
vdwlem9.k φ K 2
vdwlem9.s φ s Fin n f s 1 n K MonoAP f
vdwlem10.m φ M
Assertion vdwlem10 φ n f R 1 n M K PolyAP f K + 1 MonoAP f

Proof

Step Hyp Ref Expression
1 vdw.r φ R Fin
2 vdwlem9.k φ K 2
3 vdwlem9.s φ s Fin n f s 1 n K MonoAP f
4 vdwlem10.m φ M
5 opeq1 x = 1 x K = 1 K
6 5 breq1d x = 1 x K PolyAP f 1 K PolyAP f
7 6 orbi1d x = 1 x K PolyAP f K + 1 MonoAP f 1 K PolyAP f K + 1 MonoAP f
8 7 rexralbidv x = 1 n f R 1 n x K PolyAP f K + 1 MonoAP f n f R 1 n 1 K PolyAP f K + 1 MonoAP f
9 8 imbi2d x = 1 φ n f R 1 n x K PolyAP f K + 1 MonoAP f φ n f R 1 n 1 K PolyAP f K + 1 MonoAP f
10 opeq1 x = m x K = m K
11 10 breq1d x = m x K PolyAP f m K PolyAP f
12 11 orbi1d x = m x K PolyAP f K + 1 MonoAP f m K PolyAP f K + 1 MonoAP f
13 12 rexralbidv x = m n f R 1 n x K PolyAP f K + 1 MonoAP f n f R 1 n m K PolyAP f K + 1 MonoAP f
14 13 imbi2d x = m φ n f R 1 n x K PolyAP f K + 1 MonoAP f φ n f R 1 n m K PolyAP f K + 1 MonoAP f
15 opeq1 x = m + 1 x K = m + 1 K
16 15 breq1d x = m + 1 x K PolyAP f m + 1 K PolyAP f
17 16 orbi1d x = m + 1 x K PolyAP f K + 1 MonoAP f m + 1 K PolyAP f K + 1 MonoAP f
18 17 rexralbidv x = m + 1 n f R 1 n x K PolyAP f K + 1 MonoAP f n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
19 18 imbi2d x = m + 1 φ n f R 1 n x K PolyAP f K + 1 MonoAP f φ n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
20 opeq1 x = M x K = M K
21 20 breq1d x = M x K PolyAP f M K PolyAP f
22 21 orbi1d x = M x K PolyAP f K + 1 MonoAP f M K PolyAP f K + 1 MonoAP f
23 22 rexralbidv x = M n f R 1 n x K PolyAP f K + 1 MonoAP f n f R 1 n M K PolyAP f K + 1 MonoAP f
24 23 imbi2d x = M φ n f R 1 n x K PolyAP f K + 1 MonoAP f φ n f R 1 n M K PolyAP f K + 1 MonoAP f
25 oveq1 s = R s 1 n = R 1 n
26 25 raleqdv s = R f s 1 n K MonoAP f f R 1 n K MonoAP f
27 26 rexbidv s = R n f s 1 n K MonoAP f n f R 1 n K MonoAP f
28 27 3 1 rspcdva φ n f R 1 n K MonoAP f
29 oveq2 n = w 1 n = 1 w
30 29 oveq2d n = w R 1 n = R 1 w
31 30 raleqdv n = w f R 1 n K MonoAP f f R 1 w K MonoAP f
32 31 cbvrexvw n f R 1 n K MonoAP f w f R 1 w K MonoAP f
33 28 32 sylib φ w f R 1 w K MonoAP f
34 breq2 f = g K MonoAP f K MonoAP g
35 34 cbvralvw f R 1 w K MonoAP f g R 1 w K MonoAP g
36 2nn 2
37 simpr φ w w
38 nnmulcl 2 w 2 w
39 36 37 38 sylancr φ w 2 w
40 1 adantr φ w R Fin
41 ovex 1 2 w V
42 elmapg R Fin 1 2 w V f R 1 2 w f : 1 2 w R
43 40 41 42 sylancl φ w f R 1 2 w f : 1 2 w R
44 43 biimpa φ w f R 1 2 w f : 1 2 w R
45 simplr φ w f : 1 2 w R y 1 w f : 1 2 w R
46 elfznn y 1 w y
47 46 adantl φ w f : 1 2 w R y 1 w y
48 47 nnred φ w f : 1 2 w R y 1 w y
49 simpllr φ w f : 1 2 w R y 1 w w
50 49 nnred φ w f : 1 2 w R y 1 w w
51 elfzle2 y 1 w y w
52 51 adantl φ w f : 1 2 w R y 1 w y w
53 48 50 50 52 leadd1dd φ w f : 1 2 w R y 1 w y + w w + w
54 49 nncnd φ w f : 1 2 w R y 1 w w
55 54 2timesd φ w f : 1 2 w R y 1 w 2 w = w + w
56 53 55 breqtrrd φ w f : 1 2 w R y 1 w y + w 2 w
57 47 49 nnaddcld φ w f : 1 2 w R y 1 w y + w
58 nnuz = 1
59 57 58 eleqtrdi φ w f : 1 2 w R y 1 w y + w 1
60 39 ad2antrr φ w f : 1 2 w R y 1 w 2 w
61 60 nnzd φ w f : 1 2 w R y 1 w 2 w
62 elfz5 y + w 1 2 w y + w 1 2 w y + w 2 w
63 59 61 62 syl2anc φ w f : 1 2 w R y 1 w y + w 1 2 w y + w 2 w
64 56 63 mpbird φ w f : 1 2 w R y 1 w y + w 1 2 w
65 45 64 ffvelrnd φ w f : 1 2 w R y 1 w f y + w R
66 fvoveq1 x = y f x + w = f y + w
67 66 cbvmptv x 1 w f x + w = y 1 w f y + w
68 65 67 fmptd φ w f : 1 2 w R x 1 w f x + w : 1 w R
69 ovex 1 w V
70 elmapg R Fin 1 w V x 1 w f x + w R 1 w x 1 w f x + w : 1 w R
71 40 69 70 sylancl φ w x 1 w f x + w R 1 w x 1 w f x + w : 1 w R
72 71 biimpar φ w x 1 w f x + w : 1 w R x 1 w f x + w R 1 w
73 68 72 syldan φ w f : 1 2 w R x 1 w f x + w R 1 w
74 breq2 g = x 1 w f x + w K MonoAP g K MonoAP x 1 w f x + w
75 74 rspcv x 1 w f x + w R 1 w g R 1 w K MonoAP g K MonoAP x 1 w f x + w
76 73 75 syl φ w f : 1 2 w R g R 1 w K MonoAP g K MonoAP x 1 w f x + w
77 2nn0 2 0
78 2 ad2antrr φ w f : 1 2 w R K 2
79 eluznn0 2 0 K 2 K 0
80 77 78 79 sylancr φ w f : 1 2 w R K 0
81 69 80 68 vdwmc φ w f : 1 2 w R K MonoAP x 1 w f x + w c a d a AP K d x 1 w f x + w -1 c
82 40 ad2antrr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c R Fin
83 78 adantr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c K 2
84 simpllr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c w
85 simplr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c f : 1 2 w R
86 vex c V
87 simprll φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c a
88 simprlr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c d
89 simprr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c a AP K d x 1 w f x + w -1 c
90 82 83 84 85 86 87 88 89 67 vdwlem8 φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c 1 K PolyAP f
91 90 orcd φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c 1 K PolyAP f K + 1 MonoAP f
92 91 expr φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c 1 K PolyAP f K + 1 MonoAP f
93 92 rexlimdvva φ w f : 1 2 w R a d a AP K d x 1 w f x + w -1 c 1 K PolyAP f K + 1 MonoAP f
94 93 exlimdv φ w f : 1 2 w R c a d a AP K d x 1 w f x + w -1 c 1 K PolyAP f K + 1 MonoAP f
95 81 94 sylbid φ w f : 1 2 w R K MonoAP x 1 w f x + w 1 K PolyAP f K + 1 MonoAP f
96 76 95 syld φ w f : 1 2 w R g R 1 w K MonoAP g 1 K PolyAP f K + 1 MonoAP f
97 44 96 syldan φ w f R 1 2 w g R 1 w K MonoAP g 1 K PolyAP f K + 1 MonoAP f
98 97 ralrimdva φ w g R 1 w K MonoAP g f R 1 2 w 1 K PolyAP f K + 1 MonoAP f
99 oveq2 n = 2 w 1 n = 1 2 w
100 99 oveq2d n = 2 w R 1 n = R 1 2 w
101 100 raleqdv n = 2 w f R 1 n 1 K PolyAP f K + 1 MonoAP f f R 1 2 w 1 K PolyAP f K + 1 MonoAP f
102 101 rspcev 2 w f R 1 2 w 1 K PolyAP f K + 1 MonoAP f n f R 1 n 1 K PolyAP f K + 1 MonoAP f
103 39 98 102 syl6an φ w g R 1 w K MonoAP g n f R 1 n 1 K PolyAP f K + 1 MonoAP f
104 35 103 syl5bi φ w f R 1 w K MonoAP f n f R 1 n 1 K PolyAP f K + 1 MonoAP f
105 104 rexlimdva φ w f R 1 w K MonoAP f n f R 1 n 1 K PolyAP f K + 1 MonoAP f
106 33 105 mpd φ n f R 1 n 1 K PolyAP f K + 1 MonoAP f
107 breq2 f = g m K PolyAP f m K PolyAP g
108 breq2 f = g K + 1 MonoAP f K + 1 MonoAP g
109 107 108 orbi12d f = g m K PolyAP f K + 1 MonoAP f m K PolyAP g K + 1 MonoAP g
110 109 cbvralvw f R 1 n m K PolyAP f K + 1 MonoAP f g R 1 n m K PolyAP g K + 1 MonoAP g
111 30 raleqdv n = w g R 1 n m K PolyAP g K + 1 MonoAP g g R 1 w m K PolyAP g K + 1 MonoAP g
112 110 111 syl5bb n = w f R 1 n m K PolyAP f K + 1 MonoAP f g R 1 w m K PolyAP g K + 1 MonoAP g
113 112 cbvrexvw n f R 1 n m K PolyAP f K + 1 MonoAP f w g R 1 w m K PolyAP g K + 1 MonoAP g
114 oveq2 n = v 1 n = 1 v
115 114 oveq2d n = v s 1 n = s 1 v
116 115 raleqdv n = v f s 1 n K MonoAP f f s 1 v K MonoAP f
117 116 cbvrexvw n f s 1 n K MonoAP f v f s 1 v K MonoAP f
118 oveq1 s = R 1 w s 1 v = R 1 w 1 v
119 118 raleqdv s = R 1 w f s 1 v K MonoAP f f R 1 w 1 v K MonoAP f
120 119 rexbidv s = R 1 w v f s 1 v K MonoAP f v f R 1 w 1 v K MonoAP f
121 117 120 syl5bb s = R 1 w n f s 1 n K MonoAP f v f R 1 w 1 v K MonoAP f
122 3 ad2antrr φ m w g R 1 w m K PolyAP g K + 1 MonoAP g s Fin n f s 1 n K MonoAP f
123 1 ad2antrr φ m w g R 1 w m K PolyAP g K + 1 MonoAP g R Fin
124 fzfi 1 w Fin
125 mapfi R Fin 1 w Fin R 1 w Fin
126 123 124 125 sylancl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g R 1 w Fin
127 121 122 126 rspcdva φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f
128 simprll φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f w
129 simprrl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f v
130 nnmulcl 2 v 2 v
131 36 130 mpan v 2 v
132 nnmulcl w 2 v w 2 v
133 131 132 sylan2 w v w 2 v
134 128 129 133 syl2anc φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f w 2 v
135 simp1l φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v φ
136 135 1 syl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v R Fin
137 135 2 syl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v K 2
138 135 3 syl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v s Fin n f s 1 n K MonoAP f
139 simp1r φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v m
140 simp2ll φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v w
141 simp2lr φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v g R 1 w m K PolyAP g K + 1 MonoAP g
142 breq2 g = k m K PolyAP g m K PolyAP k
143 breq2 g = k K + 1 MonoAP g K + 1 MonoAP k
144 142 143 orbi12d g = k m K PolyAP g K + 1 MonoAP g m K PolyAP k K + 1 MonoAP k
145 144 cbvralvw g R 1 w m K PolyAP g K + 1 MonoAP g k R 1 w m K PolyAP k K + 1 MonoAP k
146 141 145 sylib φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v k R 1 w m K PolyAP k K + 1 MonoAP k
147 simp2rl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v v
148 simp2rr φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v f R 1 w 1 v K MonoAP f
149 simp3 φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v h R 1 w 2 v
150 ovex 1 w 2 v V
151 elmapg R Fin 1 w 2 v V h R 1 w 2 v h : 1 w 2 v R
152 136 150 151 sylancl φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v h R 1 w 2 v h : 1 w 2 v R
153 149 152 mpbid φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v h : 1 w 2 v R
154 fvoveq1 y = u h y + w x - 1 + v = h u + w x - 1 + v
155 154 cbvmptv y 1 w h y + w x - 1 + v = u 1 w h u + w x - 1 + v
156 oveq1 x = z x 1 = z 1
157 156 oveq1d x = z x - 1 + v = z - 1 + v
158 157 oveq2d x = z w x - 1 + v = w z - 1 + v
159 158 oveq2d x = z u + w x - 1 + v = u + w z - 1 + v
160 159 fveq2d x = z h u + w x - 1 + v = h u + w z - 1 + v
161 160 mpteq2dv x = z u 1 w h u + w x - 1 + v = u 1 w h u + w z - 1 + v
162 155 161 eqtrid x = z y 1 w h y + w x - 1 + v = u 1 w h u + w z - 1 + v
163 162 cbvmptv x 1 v y 1 w h y + w x - 1 + v = z 1 v u 1 w h u + w z - 1 + v
164 136 137 138 139 140 146 147 148 153 163 vdwlem9 φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h
165 164 3expia φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h
166 165 ralrimiv φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h
167 oveq2 n = w 2 v 1 n = 1 w 2 v
168 167 oveq2d n = w 2 v R 1 n = R 1 w 2 v
169 168 raleqdv n = w 2 v f R 1 n m + 1 K PolyAP f K + 1 MonoAP f f R 1 w 2 v m + 1 K PolyAP f K + 1 MonoAP f
170 breq2 f = h m + 1 K PolyAP f m + 1 K PolyAP h
171 breq2 f = h K + 1 MonoAP f K + 1 MonoAP h
172 170 171 orbi12d f = h m + 1 K PolyAP f K + 1 MonoAP f m + 1 K PolyAP h K + 1 MonoAP h
173 172 cbvralvw f R 1 w 2 v m + 1 K PolyAP f K + 1 MonoAP f h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h
174 169 173 bitrdi n = w 2 v f R 1 n m + 1 K PolyAP f K + 1 MonoAP f h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h
175 174 rspcev w 2 v h R 1 w 2 v m + 1 K PolyAP h K + 1 MonoAP h n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
176 134 166 175 syl2anc φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
177 176 anassrs φ m w g R 1 w m K PolyAP g K + 1 MonoAP g v f R 1 w 1 v K MonoAP f n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
178 127 177 rexlimddv φ m w g R 1 w m K PolyAP g K + 1 MonoAP g n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
179 178 rexlimdvaa φ m w g R 1 w m K PolyAP g K + 1 MonoAP g n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
180 113 179 syl5bi φ m n f R 1 n m K PolyAP f K + 1 MonoAP f n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
181 180 expcom m φ n f R 1 n m K PolyAP f K + 1 MonoAP f n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
182 181 a2d m φ n f R 1 n m K PolyAP f K + 1 MonoAP f φ n f R 1 n m + 1 K PolyAP f K + 1 MonoAP f
183 9 14 19 24 106 182 nnind M φ n f R 1 n M K PolyAP f K + 1 MonoAP f
184 4 183 mpcom φ n f R 1 n M K PolyAP f K + 1 MonoAP f