| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdw.r |
|
| 2 |
|
vdwlem9.k |
|
| 3 |
|
vdwlem9.s |
|
| 4 |
|
vdwlem9.m |
|
| 5 |
|
vdwlem9.w |
|
| 6 |
|
vdwlem9.g |
|
| 7 |
|
vdwlem9.v |
|
| 8 |
|
vdwlem9.a |
|
| 9 |
|
vdwlem9.h |
|
| 10 |
|
vdwlem9.f |
|
| 11 |
|
breq2 |
|
| 12 |
7 5 1 9 10
|
vdwlem4 |
|
| 13 |
|
ovex |
|
| 14 |
|
ovex |
|
| 15 |
13 14
|
elmap |
|
| 16 |
12 15
|
sylibr |
|
| 17 |
11 8 16
|
rspcdva |
|
| 18 |
|
eluz2nn |
|
| 19 |
2 18
|
syl |
|
| 20 |
19
|
nnnn0d |
|
| 21 |
14 20 12
|
vdwmc |
|
| 22 |
6
|
adantr |
|
| 23 |
|
simprr |
|
| 24 |
19
|
adantr |
|
| 25 |
|
simprll |
|
| 26 |
|
simprlr |
|
| 27 |
|
vdwapid1 |
|
| 28 |
24 25 26 27
|
syl3anc |
|
| 29 |
23 28
|
sseldd |
|
| 30 |
12
|
ffnd |
|
| 31 |
30
|
adantr |
|
| 32 |
|
fniniseg |
|
| 33 |
31 32
|
syl |
|
| 34 |
29 33
|
mpbid |
|
| 35 |
34
|
simprd |
|
| 36 |
12
|
adantr |
|
| 37 |
34
|
simpld |
|
| 38 |
36 37
|
ffvelcdmd |
|
| 39 |
35 38
|
eqeltrrd |
|
| 40 |
|
rsp |
|
| 41 |
22 39 40
|
sylc |
|
| 42 |
7
|
adantr |
|
| 43 |
5
|
adantr |
|
| 44 |
1
|
adantr |
|
| 45 |
9
|
adantr |
|
| 46 |
4
|
adantr |
|
| 47 |
|
ovex |
|
| 48 |
|
elmapg |
|
| 49 |
44 47 48
|
sylancl |
|
| 50 |
39 49
|
mpbid |
|
| 51 |
2
|
adantr |
|
| 52 |
42 43 44 45 10 46 50 51 25 26 23
|
vdwlem7 |
|
| 53 |
|
olc |
|
| 54 |
53
|
a1i |
|
| 55 |
52 54
|
jaod |
|
| 56 |
|
oveq1 |
|
| 57 |
56
|
oveq1d |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
oveq2d |
|
| 60 |
59
|
fveq2d |
|
| 61 |
60
|
mpteq2dv |
|
| 62 |
47
|
mptex |
|
| 63 |
61 10 62
|
fvmpt |
|
| 64 |
37 63
|
syl |
|
| 65 |
64 35
|
eqtr3d |
|
| 66 |
65
|
breq2d |
|
| 67 |
20
|
adantr |
|
| 68 |
|
peano2nn0 |
|
| 69 |
67 68
|
syl |
|
| 70 |
|
nnm1nn0 |
|
| 71 |
25 70
|
syl |
|
| 72 |
|
nn0nnaddcl |
|
| 73 |
71 42 72
|
syl2anc |
|
| 74 |
43 73
|
nnmulcld |
|
| 75 |
25 42
|
nnaddcld |
|
| 76 |
43 75
|
nnmulcld |
|
| 77 |
76
|
nnzd |
|
| 78 |
|
2nn |
|
| 79 |
|
nnmulcl |
|
| 80 |
78 7 79
|
sylancr |
|
| 81 |
5 80
|
nnmulcld |
|
| 82 |
81
|
nnzd |
|
| 83 |
82
|
adantr |
|
| 84 |
25
|
nnred |
|
| 85 |
42
|
nnred |
|
| 86 |
|
elfzle2 |
|
| 87 |
37 86
|
syl |
|
| 88 |
84 85 85 87
|
leadd1dd |
|
| 89 |
42
|
nncnd |
|
| 90 |
89
|
2timesd |
|
| 91 |
88 90
|
breqtrrd |
|
| 92 |
75
|
nnred |
|
| 93 |
80
|
nnred |
|
| 94 |
93
|
adantr |
|
| 95 |
43
|
nnred |
|
| 96 |
43
|
nngt0d |
|
| 97 |
|
lemul2 |
|
| 98 |
92 94 95 96 97
|
syl112anc |
|
| 99 |
91 98
|
mpbid |
|
| 100 |
|
eluz2 |
|
| 101 |
77 83 99 100
|
syl3anbrc |
|
| 102 |
43
|
nncnd |
|
| 103 |
|
1cnd |
|
| 104 |
71
|
nn0cnd |
|
| 105 |
104 89
|
addcld |
|
| 106 |
102 103 105
|
adddid |
|
| 107 |
103 104 89
|
addassd |
|
| 108 |
|
ax-1cn |
|
| 109 |
25
|
nncnd |
|
| 110 |
|
pncan3 |
|
| 111 |
108 109 110
|
sylancr |
|
| 112 |
111
|
oveq1d |
|
| 113 |
107 112
|
eqtr3d |
|
| 114 |
113
|
oveq2d |
|
| 115 |
102
|
mulridd |
|
| 116 |
115
|
oveq1d |
|
| 117 |
106 114 116
|
3eqtr3d |
|
| 118 |
117
|
fveq2d |
|
| 119 |
101 118
|
eleqtrd |
|
| 120 |
|
fvoveq1 |
|
| 121 |
120
|
cbvmptv |
|
| 122 |
44 69 43 74 45 119 121
|
vdwlem2 |
|
| 123 |
66 122
|
sylbird |
|
| 124 |
123
|
orim2d |
|
| 125 |
55 124
|
syld |
|
| 126 |
41 125
|
mpd |
|
| 127 |
126
|
expr |
|
| 128 |
127
|
rexlimdvva |
|
| 129 |
128
|
exlimdv |
|
| 130 |
21 129
|
sylbid |
|
| 131 |
17 130
|
mpd |
|