Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
|- ( ph -> R e. Fin ) |
2 |
|
vdwlem9.k |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
3 |
|
vdwlem9.s |
|- ( ph -> A. s e. Fin E. n e. NN A. f e. ( s ^m ( 1 ... n ) ) K MonoAP f ) |
4 |
|
vdwlem9.m |
|- ( ph -> M e. NN ) |
5 |
|
vdwlem9.w |
|- ( ph -> W e. NN ) |
6 |
|
vdwlem9.g |
|- ( ph -> A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) |
7 |
|
vdwlem9.v |
|- ( ph -> V e. NN ) |
8 |
|
vdwlem9.a |
|- ( ph -> A. f e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) K MonoAP f ) |
9 |
|
vdwlem9.h |
|- ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
10 |
|
vdwlem9.f |
|- F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) |
11 |
|
breq2 |
|- ( f = F -> ( K MonoAP f <-> K MonoAP F ) ) |
12 |
7 5 1 9 10
|
vdwlem4 |
|- ( ph -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) |
13 |
|
ovex |
|- ( R ^m ( 1 ... W ) ) e. _V |
14 |
|
ovex |
|- ( 1 ... V ) e. _V |
15 |
13 14
|
elmap |
|- ( F e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) <-> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) |
16 |
12 15
|
sylibr |
|- ( ph -> F e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) ) |
17 |
11 8 16
|
rspcdva |
|- ( ph -> K MonoAP F ) |
18 |
|
eluz2nn |
|- ( K e. ( ZZ>= ` 2 ) -> K e. NN ) |
19 |
2 18
|
syl |
|- ( ph -> K e. NN ) |
20 |
19
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
21 |
14 20 12
|
vdwmc |
|- ( ph -> ( K MonoAP F <-> E. g E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) |
22 |
6
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) |
23 |
|
simprr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) |
24 |
19
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. NN ) |
25 |
|
simprll |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. NN ) |
26 |
|
simprlr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> d e. NN ) |
27 |
|
vdwapid1 |
|- ( ( K e. NN /\ a e. NN /\ d e. NN ) -> a e. ( a ( AP ` K ) d ) ) |
28 |
24 25 26 27
|
syl3anc |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( a ( AP ` K ) d ) ) |
29 |
23 28
|
sseldd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( `' F " { g } ) ) |
30 |
12
|
ffnd |
|- ( ph -> F Fn ( 1 ... V ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> F Fn ( 1 ... V ) ) |
32 |
|
fniniseg |
|- ( F Fn ( 1 ... V ) -> ( a e. ( `' F " { g } ) <-> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) ) |
33 |
31 32
|
syl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a e. ( `' F " { g } ) <-> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) ) |
34 |
29 33
|
mpbid |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) |
35 |
34
|
simprd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) = g ) |
36 |
12
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) |
37 |
34
|
simpld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( 1 ... V ) ) |
38 |
36 37
|
ffvelrnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) e. ( R ^m ( 1 ... W ) ) ) |
39 |
35 38
|
eqeltrrd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> g e. ( R ^m ( 1 ... W ) ) ) |
40 |
|
rsp |
|- ( A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( g e. ( R ^m ( 1 ... W ) ) -> ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) ) |
41 |
22 39 40
|
sylc |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) |
42 |
7
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. NN ) |
43 |
5
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. NN ) |
44 |
1
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> R e. Fin ) |
45 |
9
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
46 |
4
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> M e. NN ) |
47 |
|
ovex |
|- ( 1 ... W ) e. _V |
48 |
|
elmapg |
|- ( ( R e. Fin /\ ( 1 ... W ) e. _V ) -> ( g e. ( R ^m ( 1 ... W ) ) <-> g : ( 1 ... W ) --> R ) ) |
49 |
44 47 48
|
sylancl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( g e. ( R ^m ( 1 ... W ) ) <-> g : ( 1 ... W ) --> R ) ) |
50 |
39 49
|
mpbid |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> g : ( 1 ... W ) --> R ) |
51 |
2
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. ( ZZ>= ` 2 ) ) |
52 |
42 43 44 45 10 46 50 51 25 26 23
|
vdwlem7 |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. M , K >. PolyAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) |
53 |
|
olc |
|- ( ( K + 1 ) MonoAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) |
54 |
53
|
a1i |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) |
55 |
52 54
|
jaod |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) |
56 |
|
oveq1 |
|- ( x = a -> ( x - 1 ) = ( a - 1 ) ) |
57 |
56
|
oveq1d |
|- ( x = a -> ( ( x - 1 ) + V ) = ( ( a - 1 ) + V ) ) |
58 |
57
|
oveq2d |
|- ( x = a -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( a - 1 ) + V ) ) ) |
59 |
58
|
oveq2d |
|- ( x = a -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) |
60 |
59
|
fveq2d |
|- ( x = a -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) |
61 |
60
|
mpteq2dv |
|- ( x = a -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) |
62 |
47
|
mptex |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) e. _V |
63 |
61 10 62
|
fvmpt |
|- ( a e. ( 1 ... V ) -> ( F ` a ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) |
64 |
37 63
|
syl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) |
65 |
64 35
|
eqtr3d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) = g ) |
66 |
65
|
breq2d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) <-> ( K + 1 ) MonoAP g ) ) |
67 |
20
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. NN0 ) |
68 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
69 |
67 68
|
syl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( K + 1 ) e. NN0 ) |
70 |
|
nnm1nn0 |
|- ( a e. NN -> ( a - 1 ) e. NN0 ) |
71 |
25 70
|
syl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a - 1 ) e. NN0 ) |
72 |
|
nn0nnaddcl |
|- ( ( ( a - 1 ) e. NN0 /\ V e. NN ) -> ( ( a - 1 ) + V ) e. NN ) |
73 |
71 42 72
|
syl2anc |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a - 1 ) + V ) e. NN ) |
74 |
43 73
|
nnmulcld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( ( a - 1 ) + V ) ) e. NN ) |
75 |
25 42
|
nnaddcld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) e. NN ) |
76 |
43 75
|
nnmulcld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) e. NN ) |
77 |
76
|
nnzd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) e. ZZ ) |
78 |
|
2nn |
|- 2 e. NN |
79 |
|
nnmulcl |
|- ( ( 2 e. NN /\ V e. NN ) -> ( 2 x. V ) e. NN ) |
80 |
78 7 79
|
sylancr |
|- ( ph -> ( 2 x. V ) e. NN ) |
81 |
5 80
|
nnmulcld |
|- ( ph -> ( W x. ( 2 x. V ) ) e. NN ) |
82 |
81
|
nnzd |
|- ( ph -> ( W x. ( 2 x. V ) ) e. ZZ ) |
83 |
82
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ZZ ) |
84 |
25
|
nnred |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. RR ) |
85 |
42
|
nnred |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. RR ) |
86 |
|
elfzle2 |
|- ( a e. ( 1 ... V ) -> a <_ V ) |
87 |
37 86
|
syl |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a <_ V ) |
88 |
84 85 85 87
|
leadd1dd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) <_ ( V + V ) ) |
89 |
42
|
nncnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. CC ) |
90 |
89
|
2timesd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 2 x. V ) = ( V + V ) ) |
91 |
88 90
|
breqtrrd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) <_ ( 2 x. V ) ) |
92 |
75
|
nnred |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) e. RR ) |
93 |
80
|
nnred |
|- ( ph -> ( 2 x. V ) e. RR ) |
94 |
93
|
adantr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 2 x. V ) e. RR ) |
95 |
43
|
nnred |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. RR ) |
96 |
43
|
nngt0d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> 0 < W ) |
97 |
|
lemul2 |
|- ( ( ( a + V ) e. RR /\ ( 2 x. V ) e. RR /\ ( W e. RR /\ 0 < W ) ) -> ( ( a + V ) <_ ( 2 x. V ) <-> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
98 |
92 94 95 96 97
|
syl112anc |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a + V ) <_ ( 2 x. V ) <-> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
99 |
91 98
|
mpbid |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) |
100 |
|
eluz2 |
|- ( ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W x. ( a + V ) ) ) <-> ( ( W x. ( a + V ) ) e. ZZ /\ ( W x. ( 2 x. V ) ) e. ZZ /\ ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
101 |
77 83 99 100
|
syl3anbrc |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W x. ( a + V ) ) ) ) |
102 |
43
|
nncnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. CC ) |
103 |
|
1cnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> 1 e. CC ) |
104 |
71
|
nn0cnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a - 1 ) e. CC ) |
105 |
104 89
|
addcld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a - 1 ) + V ) e. CC ) |
106 |
102 103 105
|
adddid |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 1 + ( ( a - 1 ) + V ) ) ) = ( ( W x. 1 ) + ( W x. ( ( a - 1 ) + V ) ) ) ) |
107 |
103 104 89
|
addassd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( 1 + ( a - 1 ) ) + V ) = ( 1 + ( ( a - 1 ) + V ) ) ) |
108 |
|
ax-1cn |
|- 1 e. CC |
109 |
25
|
nncnd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. CC ) |
110 |
|
pncan3 |
|- ( ( 1 e. CC /\ a e. CC ) -> ( 1 + ( a - 1 ) ) = a ) |
111 |
108 109 110
|
sylancr |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 1 + ( a - 1 ) ) = a ) |
112 |
111
|
oveq1d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( 1 + ( a - 1 ) ) + V ) = ( a + V ) ) |
113 |
107 112
|
eqtr3d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 1 + ( ( a - 1 ) + V ) ) = ( a + V ) ) |
114 |
113
|
oveq2d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 1 + ( ( a - 1 ) + V ) ) ) = ( W x. ( a + V ) ) ) |
115 |
102
|
mulid1d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. 1 ) = W ) |
116 |
115
|
oveq1d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( W x. 1 ) + ( W x. ( ( a - 1 ) + V ) ) ) = ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) |
117 |
106 114 116
|
3eqtr3d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) = ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) |
118 |
117
|
fveq2d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ZZ>= ` ( W x. ( a + V ) ) ) = ( ZZ>= ` ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) ) |
119 |
101 118
|
eleqtrd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) ) |
120 |
|
fvoveq1 |
|- ( y = z -> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) = ( H ` ( z + ( W x. ( ( a - 1 ) + V ) ) ) ) ) |
121 |
120
|
cbvmptv |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) = ( z e. ( 1 ... W ) |-> ( H ` ( z + ( W x. ( ( a - 1 ) + V ) ) ) ) ) |
122 |
44 69 43 74 45 119 121
|
vdwlem2 |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) -> ( K + 1 ) MonoAP H ) ) |
123 |
66 122
|
sylbird |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP g -> ( K + 1 ) MonoAP H ) ) |
124 |
123
|
orim2d |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
125 |
55 124
|
syld |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
126 |
41 125
|
mpd |
|- ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) |
127 |
126
|
expr |
|- ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
128 |
127
|
rexlimdvva |
|- ( ph -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
129 |
128
|
exlimdv |
|- ( ph -> ( E. g E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
130 |
21 129
|
sylbid |
|- ( ph -> ( K MonoAP F -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) |
131 |
17 130
|
mpd |
|- ( ph -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) |