| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r |  |-  ( ph -> R e. Fin ) | 
						
							| 2 |  | vdwlem9.k |  |-  ( ph -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | vdwlem9.s |  |-  ( ph -> A. s e. Fin E. n e. NN A. f e. ( s ^m ( 1 ... n ) ) K MonoAP f ) | 
						
							| 4 |  | vdwlem9.m |  |-  ( ph -> M e. NN ) | 
						
							| 5 |  | vdwlem9.w |  |-  ( ph -> W e. NN ) | 
						
							| 6 |  | vdwlem9.g |  |-  ( ph -> A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) | 
						
							| 7 |  | vdwlem9.v |  |-  ( ph -> V e. NN ) | 
						
							| 8 |  | vdwlem9.a |  |-  ( ph -> A. f e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) K MonoAP f ) | 
						
							| 9 |  | vdwlem9.h |  |-  ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 10 |  | vdwlem9.f |  |-  F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) | 
						
							| 11 |  | breq2 |  |-  ( f = F -> ( K MonoAP f <-> K MonoAP F ) ) | 
						
							| 12 | 7 5 1 9 10 | vdwlem4 |  |-  ( ph -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) | 
						
							| 13 |  | ovex |  |-  ( R ^m ( 1 ... W ) ) e. _V | 
						
							| 14 |  | ovex |  |-  ( 1 ... V ) e. _V | 
						
							| 15 | 13 14 | elmap |  |-  ( F e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) <-> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) | 
						
							| 16 | 12 15 | sylibr |  |-  ( ph -> F e. ( ( R ^m ( 1 ... W ) ) ^m ( 1 ... V ) ) ) | 
						
							| 17 | 11 8 16 | rspcdva |  |-  ( ph -> K MonoAP F ) | 
						
							| 18 |  | eluz2nn |  |-  ( K e. ( ZZ>= ` 2 ) -> K e. NN ) | 
						
							| 19 | 2 18 | syl |  |-  ( ph -> K e. NN ) | 
						
							| 20 | 19 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 21 | 14 20 12 | vdwmc |  |-  ( ph -> ( K MonoAP F <-> E. g E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) | 
						
							| 22 | 6 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) | 
						
							| 23 |  | simprr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) | 
						
							| 24 | 19 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. NN ) | 
						
							| 25 |  | simprll |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. NN ) | 
						
							| 26 |  | simprlr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> d e. NN ) | 
						
							| 27 |  | vdwapid1 |  |-  ( ( K e. NN /\ a e. NN /\ d e. NN ) -> a e. ( a ( AP ` K ) d ) ) | 
						
							| 28 | 24 25 26 27 | syl3anc |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( a ( AP ` K ) d ) ) | 
						
							| 29 | 23 28 | sseldd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( `' F " { g } ) ) | 
						
							| 30 | 12 | ffnd |  |-  ( ph -> F Fn ( 1 ... V ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> F Fn ( 1 ... V ) ) | 
						
							| 32 |  | fniniseg |  |-  ( F Fn ( 1 ... V ) -> ( a e. ( `' F " { g } ) <-> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a e. ( `' F " { g } ) <-> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) ) | 
						
							| 34 | 29 33 | mpbid |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a e. ( 1 ... V ) /\ ( F ` a ) = g ) ) | 
						
							| 35 | 34 | simprd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) = g ) | 
						
							| 36 | 12 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) | 
						
							| 37 | 34 | simpld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. ( 1 ... V ) ) | 
						
							| 38 | 36 37 | ffvelcdmd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) e. ( R ^m ( 1 ... W ) ) ) | 
						
							| 39 | 35 38 | eqeltrrd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> g e. ( R ^m ( 1 ... W ) ) ) | 
						
							| 40 |  | rsp |  |-  ( A. g e. ( R ^m ( 1 ... W ) ) ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( g e. ( R ^m ( 1 ... W ) ) -> ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) ) | 
						
							| 41 | 22 39 40 | sylc |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) ) | 
						
							| 42 | 7 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. NN ) | 
						
							| 43 | 5 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. NN ) | 
						
							| 44 | 1 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> R e. Fin ) | 
						
							| 45 | 9 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 46 | 4 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> M e. NN ) | 
						
							| 47 |  | ovex |  |-  ( 1 ... W ) e. _V | 
						
							| 48 |  | elmapg |  |-  ( ( R e. Fin /\ ( 1 ... W ) e. _V ) -> ( g e. ( R ^m ( 1 ... W ) ) <-> g : ( 1 ... W ) --> R ) ) | 
						
							| 49 | 44 47 48 | sylancl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( g e. ( R ^m ( 1 ... W ) ) <-> g : ( 1 ... W ) --> R ) ) | 
						
							| 50 | 39 49 | mpbid |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> g : ( 1 ... W ) --> R ) | 
						
							| 51 | 2 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 52 | 42 43 44 45 10 46 50 51 25 26 23 | vdwlem7 |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. M , K >. PolyAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) | 
						
							| 53 |  | olc |  |-  ( ( K + 1 ) MonoAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) | 
						
							| 54 | 53 | a1i |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP g -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) | 
						
							| 55 | 52 54 | jaod |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) ) ) | 
						
							| 56 |  | oveq1 |  |-  ( x = a -> ( x - 1 ) = ( a - 1 ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( x = a -> ( ( x - 1 ) + V ) = ( ( a - 1 ) + V ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( x = a -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( a - 1 ) + V ) ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( x = a -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) | 
						
							| 60 | 59 | fveq2d |  |-  ( x = a -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) | 
						
							| 61 | 60 | mpteq2dv |  |-  ( x = a -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) | 
						
							| 62 | 47 | mptex |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) e. _V | 
						
							| 63 | 61 10 62 | fvmpt |  |-  ( a e. ( 1 ... V ) -> ( F ` a ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) | 
						
							| 64 | 37 63 | syl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( F ` a ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) ) | 
						
							| 65 | 64 35 | eqtr3d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) = g ) | 
						
							| 66 | 65 | breq2d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) <-> ( K + 1 ) MonoAP g ) ) | 
						
							| 67 | 20 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> K e. NN0 ) | 
						
							| 68 |  | peano2nn0 |  |-  ( K e. NN0 -> ( K + 1 ) e. NN0 ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( K + 1 ) e. NN0 ) | 
						
							| 70 |  | nnm1nn0 |  |-  ( a e. NN -> ( a - 1 ) e. NN0 ) | 
						
							| 71 | 25 70 | syl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a - 1 ) e. NN0 ) | 
						
							| 72 |  | nn0nnaddcl |  |-  ( ( ( a - 1 ) e. NN0 /\ V e. NN ) -> ( ( a - 1 ) + V ) e. NN ) | 
						
							| 73 | 71 42 72 | syl2anc |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a - 1 ) + V ) e. NN ) | 
						
							| 74 | 43 73 | nnmulcld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( ( a - 1 ) + V ) ) e. NN ) | 
						
							| 75 | 25 42 | nnaddcld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) e. NN ) | 
						
							| 76 | 43 75 | nnmulcld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) e. NN ) | 
						
							| 77 | 76 | nnzd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) e. ZZ ) | 
						
							| 78 |  | 2nn |  |-  2 e. NN | 
						
							| 79 |  | nnmulcl |  |-  ( ( 2 e. NN /\ V e. NN ) -> ( 2 x. V ) e. NN ) | 
						
							| 80 | 78 7 79 | sylancr |  |-  ( ph -> ( 2 x. V ) e. NN ) | 
						
							| 81 | 5 80 | nnmulcld |  |-  ( ph -> ( W x. ( 2 x. V ) ) e. NN ) | 
						
							| 82 | 81 | nnzd |  |-  ( ph -> ( W x. ( 2 x. V ) ) e. ZZ ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ZZ ) | 
						
							| 84 | 25 | nnred |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. RR ) | 
						
							| 85 | 42 | nnred |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. RR ) | 
						
							| 86 |  | elfzle2 |  |-  ( a e. ( 1 ... V ) -> a <_ V ) | 
						
							| 87 | 37 86 | syl |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a <_ V ) | 
						
							| 88 | 84 85 85 87 | leadd1dd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) <_ ( V + V ) ) | 
						
							| 89 | 42 | nncnd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> V e. CC ) | 
						
							| 90 | 89 | 2timesd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 2 x. V ) = ( V + V ) ) | 
						
							| 91 | 88 90 | breqtrrd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) <_ ( 2 x. V ) ) | 
						
							| 92 | 75 | nnred |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a + V ) e. RR ) | 
						
							| 93 | 80 | nnred |  |-  ( ph -> ( 2 x. V ) e. RR ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 2 x. V ) e. RR ) | 
						
							| 95 | 43 | nnred |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. RR ) | 
						
							| 96 | 43 | nngt0d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> 0 < W ) | 
						
							| 97 |  | lemul2 |  |-  ( ( ( a + V ) e. RR /\ ( 2 x. V ) e. RR /\ ( W e. RR /\ 0 < W ) ) -> ( ( a + V ) <_ ( 2 x. V ) <-> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 98 | 92 94 95 96 97 | syl112anc |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a + V ) <_ ( 2 x. V ) <-> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 99 | 91 98 | mpbid |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) | 
						
							| 100 |  | eluz2 |  |-  ( ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W x. ( a + V ) ) ) <-> ( ( W x. ( a + V ) ) e. ZZ /\ ( W x. ( 2 x. V ) ) e. ZZ /\ ( W x. ( a + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 101 | 77 83 99 100 | syl3anbrc |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W x. ( a + V ) ) ) ) | 
						
							| 102 | 43 | nncnd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> W e. CC ) | 
						
							| 103 |  | 1cnd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> 1 e. CC ) | 
						
							| 104 | 71 | nn0cnd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( a - 1 ) e. CC ) | 
						
							| 105 | 104 89 | addcld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( a - 1 ) + V ) e. CC ) | 
						
							| 106 | 102 103 105 | adddid |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 1 + ( ( a - 1 ) + V ) ) ) = ( ( W x. 1 ) + ( W x. ( ( a - 1 ) + V ) ) ) ) | 
						
							| 107 | 103 104 89 | addassd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( 1 + ( a - 1 ) ) + V ) = ( 1 + ( ( a - 1 ) + V ) ) ) | 
						
							| 108 |  | ax-1cn |  |-  1 e. CC | 
						
							| 109 | 25 | nncnd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> a e. CC ) | 
						
							| 110 |  | pncan3 |  |-  ( ( 1 e. CC /\ a e. CC ) -> ( 1 + ( a - 1 ) ) = a ) | 
						
							| 111 | 108 109 110 | sylancr |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 1 + ( a - 1 ) ) = a ) | 
						
							| 112 | 111 | oveq1d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( 1 + ( a - 1 ) ) + V ) = ( a + V ) ) | 
						
							| 113 | 107 112 | eqtr3d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( 1 + ( ( a - 1 ) + V ) ) = ( a + V ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 1 + ( ( a - 1 ) + V ) ) ) = ( W x. ( a + V ) ) ) | 
						
							| 115 | 102 | mulridd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. 1 ) = W ) | 
						
							| 116 | 115 | oveq1d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( W x. 1 ) + ( W x. ( ( a - 1 ) + V ) ) ) = ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) | 
						
							| 117 | 106 114 116 | 3eqtr3d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( a + V ) ) = ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) | 
						
							| 118 | 117 | fveq2d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ZZ>= ` ( W x. ( a + V ) ) ) = ( ZZ>= ` ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) ) | 
						
							| 119 | 101 118 | eleqtrd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( W x. ( 2 x. V ) ) e. ( ZZ>= ` ( W + ( W x. ( ( a - 1 ) + V ) ) ) ) ) | 
						
							| 120 |  | fvoveq1 |  |-  ( y = z -> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) = ( H ` ( z + ( W x. ( ( a - 1 ) + V ) ) ) ) ) | 
						
							| 121 | 120 | cbvmptv |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) = ( z e. ( 1 ... W ) |-> ( H ` ( z + ( W x. ( ( a - 1 ) + V ) ) ) ) ) | 
						
							| 122 | 44 69 43 74 45 119 121 | vdwlem2 |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( a - 1 ) + V ) ) ) ) ) -> ( K + 1 ) MonoAP H ) ) | 
						
							| 123 | 66 122 | sylbird |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( K + 1 ) MonoAP g -> ( K + 1 ) MonoAP H ) ) | 
						
							| 124 | 123 | orim2d |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 125 | 55 124 | syld |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( ( <. M , K >. PolyAP g \/ ( K + 1 ) MonoAP g ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 126 | 41 125 | mpd |  |-  ( ( ph /\ ( ( a e. NN /\ d e. NN ) /\ ( a ( AP ` K ) d ) C_ ( `' F " { g } ) ) ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) | 
						
							| 127 | 126 | expr |  |-  ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 128 | 127 | rexlimdvva |  |-  ( ph -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 129 | 128 | exlimdv |  |-  ( ph -> ( E. g E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { g } ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 130 | 21 129 | sylbid |  |-  ( ph -> ( K MonoAP F -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) ) | 
						
							| 131 | 17 130 | mpd |  |-  ( ph -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP H ) ) |