Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem2.r |
|- ( ph -> R e. Fin ) |
2 |
|
vdwlem2.k |
|- ( ph -> K e. NN0 ) |
3 |
|
vdwlem2.w |
|- ( ph -> W e. NN ) |
4 |
|
vdwlem2.n |
|- ( ph -> N e. NN ) |
5 |
|
vdwlem2.f |
|- ( ph -> F : ( 1 ... M ) --> R ) |
6 |
|
vdwlem2.m |
|- ( ph -> M e. ( ZZ>= ` ( W + N ) ) ) |
7 |
|
vdwlem2.g |
|- G = ( x e. ( 1 ... W ) |-> ( F ` ( x + N ) ) ) |
8 |
|
id |
|- ( a e. NN -> a e. NN ) |
9 |
|
nnaddcl |
|- ( ( a e. NN /\ N e. NN ) -> ( a + N ) e. NN ) |
10 |
8 4 9
|
syl2anr |
|- ( ( ph /\ a e. NN ) -> ( a + N ) e. NN ) |
11 |
|
simpllr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. NN ) |
12 |
11
|
nncnd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. CC ) |
13 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> N e. NN ) |
14 |
13
|
nncnd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> N e. CC ) |
15 |
|
elfznn0 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) |
16 |
15
|
adantl |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) |
18 |
|
simplrl |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. NN ) |
19 |
18
|
nncnd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. CC ) |
20 |
17 19
|
mulcld |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. d ) e. CC ) |
21 |
12 14 20
|
add32d |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + N ) + ( m x. d ) ) = ( ( a + ( m x. d ) ) + N ) ) |
22 |
|
oveq1 |
|- ( x = ( a + ( m x. d ) ) -> ( x + N ) = ( ( a + ( m x. d ) ) + N ) ) |
23 |
22
|
eleq1d |
|- ( x = ( a + ( m x. d ) ) -> ( ( x + N ) e. ( 1 ... M ) <-> ( ( a + ( m x. d ) ) + N ) e. ( 1 ... M ) ) ) |
24 |
|
elfznn |
|- ( x e. ( 1 ... W ) -> x e. NN ) |
25 |
|
nnaddcl |
|- ( ( x e. NN /\ N e. NN ) -> ( x + N ) e. NN ) |
26 |
24 4 25
|
syl2anr |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. NN ) |
27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
28 |
26 27
|
eleqtrdi |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. ( ZZ>= ` 1 ) ) |
29 |
|
elfzuz3 |
|- ( x e. ( 1 ... W ) -> W e. ( ZZ>= ` x ) ) |
30 |
4
|
nnzd |
|- ( ph -> N e. ZZ ) |
31 |
|
eluzadd |
|- ( ( W e. ( ZZ>= ` x ) /\ N e. ZZ ) -> ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) |
32 |
29 30 31
|
syl2anr |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) |
33 |
|
uztrn |
|- ( ( M e. ( ZZ>= ` ( W + N ) ) /\ ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) -> M e. ( ZZ>= ` ( x + N ) ) ) |
34 |
6 32 33
|
syl2an2r |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> M e. ( ZZ>= ` ( x + N ) ) ) |
35 |
|
elfzuzb |
|- ( ( x + N ) e. ( 1 ... M ) <-> ( ( x + N ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` ( x + N ) ) ) ) |
36 |
28 34 35
|
sylanbrc |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. ( 1 ... M ) ) |
37 |
36
|
ralrimiva |
|- ( ph -> A. x e. ( 1 ... W ) ( x + N ) e. ( 1 ... M ) ) |
38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> A. x e. ( 1 ... W ) ( x + N ) e. ( 1 ... M ) ) |
39 |
|
simplrr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) |
40 |
|
eqid |
|- ( a + ( m x. d ) ) = ( a + ( m x. d ) ) |
41 |
|
oveq1 |
|- ( n = m -> ( n x. d ) = ( m x. d ) ) |
42 |
41
|
oveq2d |
|- ( n = m -> ( a + ( n x. d ) ) = ( a + ( m x. d ) ) ) |
43 |
42
|
rspceeqv |
|- ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( a + ( m x. d ) ) = ( a + ( m x. d ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) |
44 |
40 43
|
mpan2 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) |
45 |
44
|
adantl |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) |
46 |
2
|
ad2antrr |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> K e. NN0 ) |
47 |
46
|
adantr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. NN0 ) |
48 |
|
vdwapval |
|- ( ( K e. NN0 /\ a e. NN /\ d e. NN ) -> ( ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) ) |
49 |
47 11 18 48
|
syl3anc |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) ) |
50 |
45 49
|
mpbird |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) ) |
51 |
39 50
|
sseldd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( `' G " { c } ) ) |
52 |
5
|
ffvelrnda |
|- ( ( ph /\ ( x + N ) e. ( 1 ... M ) ) -> ( F ` ( x + N ) ) e. R ) |
53 |
36 52
|
syldan |
|- ( ( ph /\ x e. ( 1 ... W ) ) -> ( F ` ( x + N ) ) e. R ) |
54 |
53 7
|
fmptd |
|- ( ph -> G : ( 1 ... W ) --> R ) |
55 |
54
|
ffnd |
|- ( ph -> G Fn ( 1 ... W ) ) |
56 |
55
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> G Fn ( 1 ... W ) ) |
57 |
|
fniniseg |
|- ( G Fn ( 1 ... W ) -> ( ( a + ( m x. d ) ) e. ( `' G " { c } ) <-> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) ) |
58 |
56 57
|
syl |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( `' G " { c } ) <-> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) ) |
59 |
51 58
|
mpbid |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) |
60 |
59
|
simpld |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( 1 ... W ) ) |
61 |
23 38 60
|
rspcdva |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) + N ) e. ( 1 ... M ) ) |
62 |
21 61
|
eqeltrd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) ) |
63 |
21
|
fveq2d |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( a + N ) + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) |
64 |
22
|
fveq2d |
|- ( x = ( a + ( m x. d ) ) -> ( F ` ( x + N ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) |
65 |
|
fvex |
|- ( F ` ( ( a + ( m x. d ) ) + N ) ) e. _V |
66 |
64 7 65
|
fvmpt |
|- ( ( a + ( m x. d ) ) e. ( 1 ... W ) -> ( G ` ( a + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) |
67 |
60 66
|
syl |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( a + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) |
68 |
59
|
simprd |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( a + ( m x. d ) ) ) = c ) |
69 |
63 67 68
|
3eqtr2d |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) |
70 |
62 69
|
jca |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) /\ ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) |
71 |
|
eleq1 |
|- ( x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) <-> ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) ) ) |
72 |
|
fveqeq2 |
|- ( x = ( ( a + N ) + ( m x. d ) ) -> ( ( F ` x ) = c <-> ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) |
73 |
71 72
|
anbi12d |
|- ( x = ( ( a + N ) + ( m x. d ) ) -> ( ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) <-> ( ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) /\ ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) ) |
74 |
70 73
|
syl5ibrcom |
|- ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) |
75 |
74
|
rexlimdva |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) |
76 |
10
|
adantr |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( a + N ) e. NN ) |
77 |
|
simprl |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> d e. NN ) |
78 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( a + N ) e. NN /\ d e. NN ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) ) ) |
79 |
46 76 77 78
|
syl3anc |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) ) ) |
80 |
5
|
ffnd |
|- ( ph -> F Fn ( 1 ... M ) ) |
81 |
80
|
ad2antrr |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> F Fn ( 1 ... M ) ) |
82 |
|
fniniseg |
|- ( F Fn ( 1 ... M ) -> ( x e. ( `' F " { c } ) <-> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) |
83 |
81 82
|
syl |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( `' F " { c } ) <-> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) |
84 |
75 79 83
|
3imtr4d |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) -> x e. ( `' F " { c } ) ) ) |
85 |
84
|
ssrdv |
|- ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
86 |
85
|
expr |
|- ( ( ( ph /\ a e. NN ) /\ d e. NN ) -> ( ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
87 |
86
|
reximdva |
|- ( ( ph /\ a e. NN ) -> ( E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
88 |
|
oveq1 |
|- ( b = ( a + N ) -> ( b ( AP ` K ) d ) = ( ( a + N ) ( AP ` K ) d ) ) |
89 |
88
|
sseq1d |
|- ( b = ( a + N ) -> ( ( b ( AP ` K ) d ) C_ ( `' F " { c } ) <-> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
90 |
89
|
rexbidv |
|- ( b = ( a + N ) -> ( E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
91 |
90
|
rspcev |
|- ( ( ( a + N ) e. NN /\ E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
92 |
10 87 91
|
syl6an |
|- ( ( ph /\ a e. NN ) -> ( E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
93 |
92
|
rexlimdva |
|- ( ph -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
94 |
93
|
eximdv |
|- ( ph -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. c E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
95 |
|
ovex |
|- ( 1 ... W ) e. _V |
96 |
95 2 54
|
vdwmc |
|- ( ph -> ( K MonoAP G <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) |
97 |
|
ovex |
|- ( 1 ... M ) e. _V |
98 |
97 2 5
|
vdwmc |
|- ( ph -> ( K MonoAP F <-> E. c E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
99 |
94 96 98
|
3imtr4d |
|- ( ph -> ( K MonoAP G -> K MonoAP F ) ) |