| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem2.r |  |-  ( ph -> R e. Fin ) | 
						
							| 2 |  | vdwlem2.k |  |-  ( ph -> K e. NN0 ) | 
						
							| 3 |  | vdwlem2.w |  |-  ( ph -> W e. NN ) | 
						
							| 4 |  | vdwlem2.n |  |-  ( ph -> N e. NN ) | 
						
							| 5 |  | vdwlem2.f |  |-  ( ph -> F : ( 1 ... M ) --> R ) | 
						
							| 6 |  | vdwlem2.m |  |-  ( ph -> M e. ( ZZ>= ` ( W + N ) ) ) | 
						
							| 7 |  | vdwlem2.g |  |-  G = ( x e. ( 1 ... W ) |-> ( F ` ( x + N ) ) ) | 
						
							| 8 |  | id |  |-  ( a e. NN -> a e. NN ) | 
						
							| 9 |  | nnaddcl |  |-  ( ( a e. NN /\ N e. NN ) -> ( a + N ) e. NN ) | 
						
							| 10 | 8 4 9 | syl2anr |  |-  ( ( ph /\ a e. NN ) -> ( a + N ) e. NN ) | 
						
							| 11 |  | simpllr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. NN ) | 
						
							| 12 | 11 | nncnd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> a e. CC ) | 
						
							| 13 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> N e. NN ) | 
						
							| 14 | 13 | nncnd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> N e. CC ) | 
						
							| 15 |  | elfznn0 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) | 
						
							| 18 |  | simplrl |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. NN ) | 
						
							| 19 | 18 | nncnd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> d e. CC ) | 
						
							| 20 | 17 19 | mulcld |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. d ) e. CC ) | 
						
							| 21 | 12 14 20 | add32d |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + N ) + ( m x. d ) ) = ( ( a + ( m x. d ) ) + N ) ) | 
						
							| 22 |  | oveq1 |  |-  ( x = ( a + ( m x. d ) ) -> ( x + N ) = ( ( a + ( m x. d ) ) + N ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( x = ( a + ( m x. d ) ) -> ( ( x + N ) e. ( 1 ... M ) <-> ( ( a + ( m x. d ) ) + N ) e. ( 1 ... M ) ) ) | 
						
							| 24 |  | elfznn |  |-  ( x e. ( 1 ... W ) -> x e. NN ) | 
						
							| 25 |  | nnaddcl |  |-  ( ( x e. NN /\ N e. NN ) -> ( x + N ) e. NN ) | 
						
							| 26 | 24 4 25 | syl2anr |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. NN ) | 
						
							| 27 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 28 | 26 27 | eleqtrdi |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. ( ZZ>= ` 1 ) ) | 
						
							| 29 |  | elfzuz3 |  |-  ( x e. ( 1 ... W ) -> W e. ( ZZ>= ` x ) ) | 
						
							| 30 | 4 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 31 |  | eluzadd |  |-  ( ( W e. ( ZZ>= ` x ) /\ N e. ZZ ) -> ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) | 
						
							| 32 | 29 30 31 | syl2anr |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) | 
						
							| 33 |  | uztrn |  |-  ( ( M e. ( ZZ>= ` ( W + N ) ) /\ ( W + N ) e. ( ZZ>= ` ( x + N ) ) ) -> M e. ( ZZ>= ` ( x + N ) ) ) | 
						
							| 34 | 6 32 33 | syl2an2r |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> M e. ( ZZ>= ` ( x + N ) ) ) | 
						
							| 35 |  | elfzuzb |  |-  ( ( x + N ) e. ( 1 ... M ) <-> ( ( x + N ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` ( x + N ) ) ) ) | 
						
							| 36 | 28 34 35 | sylanbrc |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> ( x + N ) e. ( 1 ... M ) ) | 
						
							| 37 | 36 | ralrimiva |  |-  ( ph -> A. x e. ( 1 ... W ) ( x + N ) e. ( 1 ... M ) ) | 
						
							| 38 | 37 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> A. x e. ( 1 ... W ) ( x + N ) e. ( 1 ... M ) ) | 
						
							| 39 |  | simplrr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) | 
						
							| 40 |  | eqid |  |-  ( a + ( m x. d ) ) = ( a + ( m x. d ) ) | 
						
							| 41 |  | oveq1 |  |-  ( n = m -> ( n x. d ) = ( m x. d ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( n = m -> ( a + ( n x. d ) ) = ( a + ( m x. d ) ) ) | 
						
							| 43 | 42 | rspceeqv |  |-  ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( a + ( m x. d ) ) = ( a + ( m x. d ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) | 
						
							| 44 | 40 43 | mpan2 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) | 
						
							| 46 | 2 | ad2antrr |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> K e. NN0 ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> K e. NN0 ) | 
						
							| 48 |  | vdwapval |  |-  ( ( K e. NN0 /\ a e. NN /\ d e. NN ) -> ( ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) ) | 
						
							| 49 | 47 11 18 48 | syl3anc |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) = ( a + ( n x. d ) ) ) ) | 
						
							| 50 | 45 49 | mpbird |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( a ( AP ` K ) d ) ) | 
						
							| 51 | 39 50 | sseldd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( `' G " { c } ) ) | 
						
							| 52 | 5 | ffvelcdmda |  |-  ( ( ph /\ ( x + N ) e. ( 1 ... M ) ) -> ( F ` ( x + N ) ) e. R ) | 
						
							| 53 | 36 52 | syldan |  |-  ( ( ph /\ x e. ( 1 ... W ) ) -> ( F ` ( x + N ) ) e. R ) | 
						
							| 54 | 53 7 | fmptd |  |-  ( ph -> G : ( 1 ... W ) --> R ) | 
						
							| 55 | 54 | ffnd |  |-  ( ph -> G Fn ( 1 ... W ) ) | 
						
							| 56 | 55 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> G Fn ( 1 ... W ) ) | 
						
							| 57 |  | fniniseg |  |-  ( G Fn ( 1 ... W ) -> ( ( a + ( m x. d ) ) e. ( `' G " { c } ) <-> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( `' G " { c } ) <-> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) ) | 
						
							| 59 | 51 58 | mpbid |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) e. ( 1 ... W ) /\ ( G ` ( a + ( m x. d ) ) ) = c ) ) | 
						
							| 60 | 59 | simpld |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( a + ( m x. d ) ) e. ( 1 ... W ) ) | 
						
							| 61 | 23 38 60 | rspcdva |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + ( m x. d ) ) + N ) e. ( 1 ... M ) ) | 
						
							| 62 | 21 61 | eqeltrd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) ) | 
						
							| 63 | 21 | fveq2d |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( a + N ) + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) | 
						
							| 64 | 22 | fveq2d |  |-  ( x = ( a + ( m x. d ) ) -> ( F ` ( x + N ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) | 
						
							| 65 |  | fvex |  |-  ( F ` ( ( a + ( m x. d ) ) + N ) ) e. _V | 
						
							| 66 | 64 7 65 | fvmpt |  |-  ( ( a + ( m x. d ) ) e. ( 1 ... W ) -> ( G ` ( a + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) | 
						
							| 67 | 60 66 | syl |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( a + ( m x. d ) ) ) = ( F ` ( ( a + ( m x. d ) ) + N ) ) ) | 
						
							| 68 | 59 | simprd |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( a + ( m x. d ) ) ) = c ) | 
						
							| 69 | 63 67 68 | 3eqtr2d |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) | 
						
							| 70 | 62 69 | jca |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) /\ ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) | 
						
							| 71 |  | eleq1 |  |-  ( x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) <-> ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) ) ) | 
						
							| 72 |  | fveqeq2 |  |-  ( x = ( ( a + N ) + ( m x. d ) ) -> ( ( F ` x ) = c <-> ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) | 
						
							| 73 | 71 72 | anbi12d |  |-  ( x = ( ( a + N ) + ( m x. d ) ) -> ( ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) <-> ( ( ( a + N ) + ( m x. d ) ) e. ( 1 ... M ) /\ ( F ` ( ( a + N ) + ( m x. d ) ) ) = c ) ) ) | 
						
							| 74 | 70 73 | syl5ibrcom |  |-  ( ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) | 
						
							| 75 | 74 | rexlimdva |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) -> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) | 
						
							| 76 | 10 | adantr |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( a + N ) e. NN ) | 
						
							| 77 |  | simprl |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> d e. NN ) | 
						
							| 78 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( a + N ) e. NN /\ d e. NN ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) ) ) | 
						
							| 79 | 46 76 77 78 | syl3anc |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( a + N ) + ( m x. d ) ) ) ) | 
						
							| 80 | 5 | ffnd |  |-  ( ph -> F Fn ( 1 ... M ) ) | 
						
							| 81 | 80 | ad2antrr |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> F Fn ( 1 ... M ) ) | 
						
							| 82 |  | fniniseg |  |-  ( F Fn ( 1 ... M ) -> ( x e. ( `' F " { c } ) <-> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( `' F " { c } ) <-> ( x e. ( 1 ... M ) /\ ( F ` x ) = c ) ) ) | 
						
							| 84 | 75 79 83 | 3imtr4d |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( x e. ( ( a + N ) ( AP ` K ) d ) -> x e. ( `' F " { c } ) ) ) | 
						
							| 85 | 84 | ssrdv |  |-  ( ( ( ph /\ a e. NN ) /\ ( d e. NN /\ ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) -> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) | 
						
							| 86 | 85 | expr |  |-  ( ( ( ph /\ a e. NN ) /\ d e. NN ) -> ( ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 87 | 86 | reximdva |  |-  ( ( ph /\ a e. NN ) -> ( E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 88 |  | oveq1 |  |-  ( b = ( a + N ) -> ( b ( AP ` K ) d ) = ( ( a + N ) ( AP ` K ) d ) ) | 
						
							| 89 | 88 | sseq1d |  |-  ( b = ( a + N ) -> ( ( b ( AP ` K ) d ) C_ ( `' F " { c } ) <-> ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 90 | 89 | rexbidv |  |-  ( b = ( a + N ) -> ( E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 91 | 90 | rspcev |  |-  ( ( ( a + N ) e. NN /\ E. d e. NN ( ( a + N ) ( AP ` K ) d ) C_ ( `' F " { c } ) ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) | 
						
							| 92 | 10 87 91 | syl6an |  |-  ( ( ph /\ a e. NN ) -> ( E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 93 | 92 | rexlimdva |  |-  ( ph -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 94 | 93 | eximdv |  |-  ( ph -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) -> E. c E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 95 |  | ovex |  |-  ( 1 ... W ) e. _V | 
						
							| 96 | 95 2 54 | vdwmc |  |-  ( ph -> ( K MonoAP G <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' G " { c } ) ) ) | 
						
							| 97 |  | ovex |  |-  ( 1 ... M ) e. _V | 
						
							| 98 | 97 2 5 | vdwmc |  |-  ( ph -> ( K MonoAP F <-> E. c E. b e. NN E. d e. NN ( b ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 99 | 94 96 98 | 3imtr4d |  |-  ( ph -> ( K MonoAP G -> K MonoAP F ) ) |