| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v |  |-  ( ph -> V e. NN ) | 
						
							| 2 |  | vdwlem3.w |  |-  ( ph -> W e. NN ) | 
						
							| 3 |  | vdwlem3.a |  |-  ( ph -> A e. ( 1 ... V ) ) | 
						
							| 4 |  | vdwlem3.b |  |-  ( ph -> B e. ( 1 ... W ) ) | 
						
							| 5 |  | elfznn |  |-  ( B e. ( 1 ... W ) -> B e. NN ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> B e. NN ) | 
						
							| 7 |  | elfznn |  |-  ( A e. ( 1 ... V ) -> A e. NN ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> A e. NN ) | 
						
							| 9 |  | nnm1nn0 |  |-  ( A e. NN -> ( A - 1 ) e. NN0 ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( A - 1 ) e. NN0 ) | 
						
							| 11 |  | nn0nnaddcl |  |-  ( ( ( A - 1 ) e. NN0 /\ V e. NN ) -> ( ( A - 1 ) + V ) e. NN ) | 
						
							| 12 | 10 1 11 | syl2anc |  |-  ( ph -> ( ( A - 1 ) + V ) e. NN ) | 
						
							| 13 | 2 12 | nnmulcld |  |-  ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) | 
						
							| 14 | 6 13 | nnaddcld |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) | 
						
							| 15 | 14 | nnred |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. RR ) | 
						
							| 16 | 8 1 | nnaddcld |  |-  ( ph -> ( A + V ) e. NN ) | 
						
							| 17 | 2 16 | nnmulcld |  |-  ( ph -> ( W x. ( A + V ) ) e. NN ) | 
						
							| 18 | 17 | nnred |  |-  ( ph -> ( W x. ( A + V ) ) e. RR ) | 
						
							| 19 |  | 2nn |  |-  2 e. NN | 
						
							| 20 |  | nnmulcl |  |-  ( ( 2 e. NN /\ V e. NN ) -> ( 2 x. V ) e. NN ) | 
						
							| 21 | 19 1 20 | sylancr |  |-  ( ph -> ( 2 x. V ) e. NN ) | 
						
							| 22 | 2 21 | nnmulcld |  |-  ( ph -> ( W x. ( 2 x. V ) ) e. NN ) | 
						
							| 23 | 22 | nnred |  |-  ( ph -> ( W x. ( 2 x. V ) ) e. RR ) | 
						
							| 24 |  | elfzle2 |  |-  ( B e. ( 1 ... W ) -> B <_ W ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> B <_ W ) | 
						
							| 26 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 27 |  | nnre |  |-  ( W e. NN -> W e. RR ) | 
						
							| 28 |  | nnre |  |-  ( ( W x. ( ( A - 1 ) + V ) ) e. NN -> ( W x. ( ( A - 1 ) + V ) ) e. RR ) | 
						
							| 29 |  | leadd1 |  |-  ( ( B e. RR /\ W e. RR /\ ( W x. ( ( A - 1 ) + V ) ) e. RR ) -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 30 | 26 27 28 29 | syl3an |  |-  ( ( B e. NN /\ W e. NN /\ ( W x. ( ( A - 1 ) + V ) ) e. NN ) -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 31 | 6 2 13 30 | syl3anc |  |-  ( ph -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 32 | 25 31 | mpbid |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 33 | 2 | nncnd |  |-  ( ph -> W e. CC ) | 
						
							| 34 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 35 | 12 | nncnd |  |-  ( ph -> ( ( A - 1 ) + V ) e. CC ) | 
						
							| 36 | 33 34 35 | adddid |  |-  ( ph -> ( W x. ( 1 + ( ( A - 1 ) + V ) ) ) = ( ( W x. 1 ) + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 37 | 10 | nn0cnd |  |-  ( ph -> ( A - 1 ) e. CC ) | 
						
							| 38 | 1 | nncnd |  |-  ( ph -> V e. CC ) | 
						
							| 39 | 34 37 38 | addassd |  |-  ( ph -> ( ( 1 + ( A - 1 ) ) + V ) = ( 1 + ( ( A - 1 ) + V ) ) ) | 
						
							| 40 |  | ax-1cn |  |-  1 e. CC | 
						
							| 41 | 8 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 42 |  | pncan3 |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 + ( A - 1 ) ) = A ) | 
						
							| 43 | 40 41 42 | sylancr |  |-  ( ph -> ( 1 + ( A - 1 ) ) = A ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ph -> ( ( 1 + ( A - 1 ) ) + V ) = ( A + V ) ) | 
						
							| 45 | 39 44 | eqtr3d |  |-  ( ph -> ( 1 + ( ( A - 1 ) + V ) ) = ( A + V ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( W x. ( 1 + ( ( A - 1 ) + V ) ) ) = ( W x. ( A + V ) ) ) | 
						
							| 47 | 33 | mulridd |  |-  ( ph -> ( W x. 1 ) = W ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ph -> ( ( W x. 1 ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 49 | 36 46 48 | 3eqtr3d |  |-  ( ph -> ( W x. ( A + V ) ) = ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 50 | 32 49 | breqtrrd |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( A + V ) ) ) | 
						
							| 51 | 8 | nnred |  |-  ( ph -> A e. RR ) | 
						
							| 52 | 1 | nnred |  |-  ( ph -> V e. RR ) | 
						
							| 53 |  | elfzle2 |  |-  ( A e. ( 1 ... V ) -> A <_ V ) | 
						
							| 54 | 3 53 | syl |  |-  ( ph -> A <_ V ) | 
						
							| 55 | 51 52 52 54 | leadd1dd |  |-  ( ph -> ( A + V ) <_ ( V + V ) ) | 
						
							| 56 | 38 | 2timesd |  |-  ( ph -> ( 2 x. V ) = ( V + V ) ) | 
						
							| 57 | 55 56 | breqtrrd |  |-  ( ph -> ( A + V ) <_ ( 2 x. V ) ) | 
						
							| 58 | 16 | nnred |  |-  ( ph -> ( A + V ) e. RR ) | 
						
							| 59 | 21 | nnred |  |-  ( ph -> ( 2 x. V ) e. RR ) | 
						
							| 60 | 2 | nnred |  |-  ( ph -> W e. RR ) | 
						
							| 61 | 2 | nngt0d |  |-  ( ph -> 0 < W ) | 
						
							| 62 |  | lemul2 |  |-  ( ( ( A + V ) e. RR /\ ( 2 x. V ) e. RR /\ ( W e. RR /\ 0 < W ) ) -> ( ( A + V ) <_ ( 2 x. V ) <-> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 63 | 58 59 60 61 62 | syl112anc |  |-  ( ph -> ( ( A + V ) <_ ( 2 x. V ) <-> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 64 | 57 63 | mpbid |  |-  ( ph -> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) | 
						
							| 65 | 15 18 23 50 64 | letrd |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) | 
						
							| 66 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 67 | 14 66 | eleqtrdi |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 68 | 22 | nnzd |  |-  ( ph -> ( W x. ( 2 x. V ) ) e. ZZ ) | 
						
							| 69 |  | elfz5 |  |-  ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( ZZ>= ` 1 ) /\ ( W x. ( 2 x. V ) ) e. ZZ ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 70 | 67 68 69 | syl2anc |  |-  ( ph -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) ) | 
						
							| 71 | 65 70 | mpbird |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |