| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem3.v |
|- ( ph -> V e. NN ) |
| 2 |
|
vdwlem3.w |
|- ( ph -> W e. NN ) |
| 3 |
|
vdwlem3.a |
|- ( ph -> A e. ( 1 ... V ) ) |
| 4 |
|
vdwlem3.b |
|- ( ph -> B e. ( 1 ... W ) ) |
| 5 |
|
elfznn |
|- ( B e. ( 1 ... W ) -> B e. NN ) |
| 6 |
4 5
|
syl |
|- ( ph -> B e. NN ) |
| 7 |
|
elfznn |
|- ( A e. ( 1 ... V ) -> A e. NN ) |
| 8 |
3 7
|
syl |
|- ( ph -> A e. NN ) |
| 9 |
|
nnm1nn0 |
|- ( A e. NN -> ( A - 1 ) e. NN0 ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( A - 1 ) e. NN0 ) |
| 11 |
|
nn0nnaddcl |
|- ( ( ( A - 1 ) e. NN0 /\ V e. NN ) -> ( ( A - 1 ) + V ) e. NN ) |
| 12 |
10 1 11
|
syl2anc |
|- ( ph -> ( ( A - 1 ) + V ) e. NN ) |
| 13 |
2 12
|
nnmulcld |
|- ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) |
| 14 |
6 13
|
nnaddcld |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) |
| 15 |
14
|
nnred |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. RR ) |
| 16 |
8 1
|
nnaddcld |
|- ( ph -> ( A + V ) e. NN ) |
| 17 |
2 16
|
nnmulcld |
|- ( ph -> ( W x. ( A + V ) ) e. NN ) |
| 18 |
17
|
nnred |
|- ( ph -> ( W x. ( A + V ) ) e. RR ) |
| 19 |
|
2nn |
|- 2 e. NN |
| 20 |
|
nnmulcl |
|- ( ( 2 e. NN /\ V e. NN ) -> ( 2 x. V ) e. NN ) |
| 21 |
19 1 20
|
sylancr |
|- ( ph -> ( 2 x. V ) e. NN ) |
| 22 |
2 21
|
nnmulcld |
|- ( ph -> ( W x. ( 2 x. V ) ) e. NN ) |
| 23 |
22
|
nnred |
|- ( ph -> ( W x. ( 2 x. V ) ) e. RR ) |
| 24 |
|
elfzle2 |
|- ( B e. ( 1 ... W ) -> B <_ W ) |
| 25 |
4 24
|
syl |
|- ( ph -> B <_ W ) |
| 26 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 27 |
|
nnre |
|- ( W e. NN -> W e. RR ) |
| 28 |
|
nnre |
|- ( ( W x. ( ( A - 1 ) + V ) ) e. NN -> ( W x. ( ( A - 1 ) + V ) ) e. RR ) |
| 29 |
|
leadd1 |
|- ( ( B e. RR /\ W e. RR /\ ( W x. ( ( A - 1 ) + V ) ) e. RR ) -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 30 |
26 27 28 29
|
syl3an |
|- ( ( B e. NN /\ W e. NN /\ ( W x. ( ( A - 1 ) + V ) ) e. NN ) -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 31 |
6 2 13 30
|
syl3anc |
|- ( ph -> ( B <_ W <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 32 |
25 31
|
mpbid |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 33 |
2
|
nncnd |
|- ( ph -> W e. CC ) |
| 34 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 35 |
12
|
nncnd |
|- ( ph -> ( ( A - 1 ) + V ) e. CC ) |
| 36 |
33 34 35
|
adddid |
|- ( ph -> ( W x. ( 1 + ( ( A - 1 ) + V ) ) ) = ( ( W x. 1 ) + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 37 |
10
|
nn0cnd |
|- ( ph -> ( A - 1 ) e. CC ) |
| 38 |
1
|
nncnd |
|- ( ph -> V e. CC ) |
| 39 |
34 37 38
|
addassd |
|- ( ph -> ( ( 1 + ( A - 1 ) ) + V ) = ( 1 + ( ( A - 1 ) + V ) ) ) |
| 40 |
|
ax-1cn |
|- 1 e. CC |
| 41 |
8
|
nncnd |
|- ( ph -> A e. CC ) |
| 42 |
|
pncan3 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + ( A - 1 ) ) = A ) |
| 43 |
40 41 42
|
sylancr |
|- ( ph -> ( 1 + ( A - 1 ) ) = A ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( 1 + ( A - 1 ) ) + V ) = ( A + V ) ) |
| 45 |
39 44
|
eqtr3d |
|- ( ph -> ( 1 + ( ( A - 1 ) + V ) ) = ( A + V ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( W x. ( 1 + ( ( A - 1 ) + V ) ) ) = ( W x. ( A + V ) ) ) |
| 47 |
33
|
mulridd |
|- ( ph -> ( W x. 1 ) = W ) |
| 48 |
47
|
oveq1d |
|- ( ph -> ( ( W x. 1 ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 49 |
36 46 48
|
3eqtr3d |
|- ( ph -> ( W x. ( A + V ) ) = ( W + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 50 |
32 49
|
breqtrrd |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( A + V ) ) ) |
| 51 |
8
|
nnred |
|- ( ph -> A e. RR ) |
| 52 |
1
|
nnred |
|- ( ph -> V e. RR ) |
| 53 |
|
elfzle2 |
|- ( A e. ( 1 ... V ) -> A <_ V ) |
| 54 |
3 53
|
syl |
|- ( ph -> A <_ V ) |
| 55 |
51 52 52 54
|
leadd1dd |
|- ( ph -> ( A + V ) <_ ( V + V ) ) |
| 56 |
38
|
2timesd |
|- ( ph -> ( 2 x. V ) = ( V + V ) ) |
| 57 |
55 56
|
breqtrrd |
|- ( ph -> ( A + V ) <_ ( 2 x. V ) ) |
| 58 |
16
|
nnred |
|- ( ph -> ( A + V ) e. RR ) |
| 59 |
21
|
nnred |
|- ( ph -> ( 2 x. V ) e. RR ) |
| 60 |
2
|
nnred |
|- ( ph -> W e. RR ) |
| 61 |
2
|
nngt0d |
|- ( ph -> 0 < W ) |
| 62 |
|
lemul2 |
|- ( ( ( A + V ) e. RR /\ ( 2 x. V ) e. RR /\ ( W e. RR /\ 0 < W ) ) -> ( ( A + V ) <_ ( 2 x. V ) <-> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
| 63 |
58 59 60 61 62
|
syl112anc |
|- ( ph -> ( ( A + V ) <_ ( 2 x. V ) <-> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
| 64 |
57 63
|
mpbid |
|- ( ph -> ( W x. ( A + V ) ) <_ ( W x. ( 2 x. V ) ) ) |
| 65 |
15 18 23 50 64
|
letrd |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) |
| 66 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 67 |
14 66
|
eleqtrdi |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( ZZ>= ` 1 ) ) |
| 68 |
22
|
nnzd |
|- ( ph -> ( W x. ( 2 x. V ) ) e. ZZ ) |
| 69 |
|
elfz5 |
|- ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( ZZ>= ` 1 ) /\ ( W x. ( 2 x. V ) ) e. ZZ ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
| 70 |
67 68 69
|
syl2anc |
|- ( ph -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( B + ( W x. ( ( A - 1 ) + V ) ) ) <_ ( W x. ( 2 x. V ) ) ) ) |
| 71 |
65 70
|
mpbird |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |