Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
3 |
|
vdwlem3.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑉 ) ) |
4 |
|
vdwlem3.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 1 ... 𝑊 ) ) |
5 |
|
elfznn |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → 𝐵 ∈ ℕ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
7 |
|
elfznn |
⊢ ( 𝐴 ∈ ( 1 ... 𝑉 ) → 𝐴 ∈ ℕ ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
9 |
|
nnm1nn0 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℕ0 ) |
11 |
|
nn0nnaddcl |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℕ0 ∧ 𝑉 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
12 |
10 1 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
13 |
2 12
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) |
14 |
6 13
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ) |
15 |
14
|
nnred |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℝ ) |
16 |
8 1
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ∈ ℕ ) |
17 |
2 16
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ∈ ℕ ) |
18 |
17
|
nnred |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ∈ ℝ ) |
19 |
|
2nn |
⊢ 2 ∈ ℕ |
20 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑉 ∈ ℕ ) → ( 2 · 𝑉 ) ∈ ℕ ) |
21 |
19 1 20
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℕ ) |
22 |
2 21
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℕ ) |
23 |
22
|
nnred |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℝ ) |
24 |
|
elfzle2 |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → 𝐵 ≤ 𝑊 ) |
25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ 𝑊 ) |
26 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
27 |
|
nnre |
⊢ ( 𝑊 ∈ ℕ → 𝑊 ∈ ℝ ) |
28 |
|
nnre |
⊢ ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℝ ) |
29 |
|
leadd1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℝ ) → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
30 |
26 27 28 29
|
syl3an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
31 |
6 2 13 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
32 |
25 31
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
33 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
34 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
35 |
12
|
nncnd |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℂ ) |
36 |
33 34 35
|
adddid |
⊢ ( 𝜑 → ( 𝑊 · ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
37 |
10
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℂ ) |
38 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
39 |
34 37 38
|
addassd |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 − 1 ) ) + 𝑉 ) = ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) |
40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
41 |
8
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
42 |
|
pncan3 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝐴 − 1 ) ) = 𝐴 ) |
43 |
40 41 42
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( 𝐴 − 1 ) ) = 𝐴 ) |
44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 − 1 ) ) + 𝑉 ) = ( 𝐴 + 𝑉 ) ) |
45 |
39 44
|
eqtr3d |
⊢ ( 𝜑 → ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) = ( 𝐴 + 𝑉 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 · ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( 𝑊 · ( 𝐴 + 𝑉 ) ) ) |
47 |
33
|
mulid1d |
⊢ ( 𝜑 → ( 𝑊 · 1 ) = 𝑊 ) |
48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
49 |
36 46 48
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
50 |
32 49
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ) |
51 |
8
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
52 |
1
|
nnred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
53 |
|
elfzle2 |
⊢ ( 𝐴 ∈ ( 1 ... 𝑉 ) → 𝐴 ≤ 𝑉 ) |
54 |
3 53
|
syl |
⊢ ( 𝜑 → 𝐴 ≤ 𝑉 ) |
55 |
51 52 52 54
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ≤ ( 𝑉 + 𝑉 ) ) |
56 |
38
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑉 ) = ( 𝑉 + 𝑉 ) ) |
57 |
55 56
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ) |
58 |
16
|
nnred |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ∈ ℝ ) |
59 |
21
|
nnred |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℝ ) |
60 |
2
|
nnred |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
61 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑊 ) |
62 |
|
lemul2 |
⊢ ( ( ( 𝐴 + 𝑉 ) ∈ ℝ ∧ ( 2 · 𝑉 ) ∈ ℝ ∧ ( 𝑊 ∈ ℝ ∧ 0 < 𝑊 ) ) → ( ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
63 |
58 59 60 61 62
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
64 |
57 63
|
mpbid |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) |
65 |
15 18 23 50 64
|
letrd |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) |
66 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
67 |
14 66
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
68 |
22
|
nnzd |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) |
69 |
|
elfz5 |
⊢ ( ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
70 |
67 68 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
71 |
65 70
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |