| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v | ⊢ ( 𝜑  →  𝑉  ∈  ℕ ) | 
						
							| 2 |  | vdwlem3.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 3 |  | vdwlem3.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 4 |  | vdwlem3.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 5 |  | elfznn | ⊢ ( 𝐵  ∈  ( 1 ... 𝑊 )  →  𝐵  ∈  ℕ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 7 |  | elfznn | ⊢ ( 𝐴  ∈  ( 1 ... 𝑉 )  →  𝐴  ∈  ℕ ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 9 |  | nnm1nn0 | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  −  1 )  ∈  ℕ0 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℕ0 ) | 
						
							| 11 |  | nn0nnaddcl | ⊢ ( ( ( 𝐴  −  1 )  ∈  ℕ0  ∧  𝑉  ∈  ℕ )  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 12 | 10 1 11 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 13 | 2 12 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 14 | 6 13 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℕ ) | 
						
							| 15 | 14 | nnred | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℝ ) | 
						
							| 16 | 8 1 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝑉 )  ∈  ℕ ) | 
						
							| 17 | 2 16 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 18 | 17 | nnred | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  ∈  ℝ ) | 
						
							| 19 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 20 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑉  ∈  ℕ )  →  ( 2  ·  𝑉 )  ∈  ℕ ) | 
						
							| 21 | 19 1 20 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑉 )  ∈  ℕ ) | 
						
							| 22 | 2 21 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℕ ) | 
						
							| 23 | 22 | nnred | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℝ ) | 
						
							| 24 |  | elfzle2 | ⊢ ( 𝐵  ∈  ( 1 ... 𝑊 )  →  𝐵  ≤  𝑊 ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝜑  →  𝐵  ≤  𝑊 ) | 
						
							| 26 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 27 |  | nnre | ⊢ ( 𝑊  ∈  ℕ  →  𝑊  ∈  ℝ ) | 
						
							| 28 |  | nnre | ⊢ ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℕ  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℝ ) | 
						
							| 29 |  | leadd1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑊  ∈  ℝ  ∧  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℝ )  →  ( 𝐵  ≤  𝑊  ↔  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 30 | 26 27 28 29 | syl3an | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑊  ∈  ℕ  ∧  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℕ )  →  ( 𝐵  ≤  𝑊  ↔  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 31 | 6 2 13 30 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ≤  𝑊  ↔  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 32 | 25 31 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 33 | 2 | nncnd | ⊢ ( 𝜑  →  𝑊  ∈  ℂ ) | 
						
							| 34 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 35 | 12 | nncnd | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℂ ) | 
						
							| 36 | 33 34 35 | adddid | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 1  +  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  =  ( ( 𝑊  ·  1 )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 37 | 10 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 38 | 1 | nncnd | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 39 | 34 37 38 | addassd | ⊢ ( 𝜑  →  ( ( 1  +  ( 𝐴  −  1 ) )  +  𝑉 )  =  ( 1  +  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) | 
						
							| 40 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 41 | 8 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 42 |  | pncan3 | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 1  +  ( 𝐴  −  1 ) )  =  𝐴 ) | 
						
							| 43 | 40 41 42 | sylancr | ⊢ ( 𝜑  →  ( 1  +  ( 𝐴  −  1 ) )  =  𝐴 ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  +  ( 𝐴  −  1 ) )  +  𝑉 )  =  ( 𝐴  +  𝑉 ) ) | 
						
							| 45 | 39 44 | eqtr3d | ⊢ ( 𝜑  →  ( 1  +  ( ( 𝐴  −  1 )  +  𝑉 ) )  =  ( 𝐴  +  𝑉 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 1  +  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  =  ( 𝑊  ·  ( 𝐴  +  𝑉 ) ) ) | 
						
							| 47 | 33 | mulridd | ⊢ ( 𝜑  →  ( 𝑊  ·  1 )  =  𝑊 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑊  ·  1 )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  =  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 49 | 36 46 48 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  =  ( 𝑊  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 50 | 32 49 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  ·  ( 𝐴  +  𝑉 ) ) ) | 
						
							| 51 | 8 | nnred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 52 | 1 | nnred | ⊢ ( 𝜑  →  𝑉  ∈  ℝ ) | 
						
							| 53 |  | elfzle2 | ⊢ ( 𝐴  ∈  ( 1 ... 𝑉 )  →  𝐴  ≤  𝑉 ) | 
						
							| 54 | 3 53 | syl | ⊢ ( 𝜑  →  𝐴  ≤  𝑉 ) | 
						
							| 55 | 51 52 52 54 | leadd1dd | ⊢ ( 𝜑  →  ( 𝐴  +  𝑉 )  ≤  ( 𝑉  +  𝑉 ) ) | 
						
							| 56 | 38 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑉 )  =  ( 𝑉  +  𝑉 ) ) | 
						
							| 57 | 55 56 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐴  +  𝑉 )  ≤  ( 2  ·  𝑉 ) ) | 
						
							| 58 | 16 | nnred | ⊢ ( 𝜑  →  ( 𝐴  +  𝑉 )  ∈  ℝ ) | 
						
							| 59 | 21 | nnred | ⊢ ( 𝜑  →  ( 2  ·  𝑉 )  ∈  ℝ ) | 
						
							| 60 | 2 | nnred | ⊢ ( 𝜑  →  𝑊  ∈  ℝ ) | 
						
							| 61 | 2 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑊 ) | 
						
							| 62 |  | lemul2 | ⊢ ( ( ( 𝐴  +  𝑉 )  ∈  ℝ  ∧  ( 2  ·  𝑉 )  ∈  ℝ  ∧  ( 𝑊  ∈  ℝ  ∧  0  <  𝑊 ) )  →  ( ( 𝐴  +  𝑉 )  ≤  ( 2  ·  𝑉 )  ↔  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 63 | 58 59 60 61 62 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑉 )  ≤  ( 2  ·  𝑉 )  ↔  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 64 | 57 63 | mpbid | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 𝐴  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) | 
						
							| 65 | 15 18 23 50 64 | letrd | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) | 
						
							| 66 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 67 | 14 66 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 68 | 22 | nnzd | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℤ ) | 
						
							| 69 |  | elfz5 | ⊢ ( ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℤ )  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ↔  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 70 | 67 68 69 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ↔  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 71 | 65 70 | mpbird | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) |