| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
| 2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
| 3 |
|
vdwlem3.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑉 ) ) |
| 4 |
|
vdwlem3.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 1 ... 𝑊 ) ) |
| 5 |
|
elfznn |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → 𝐵 ∈ ℕ ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 7 |
|
elfznn |
⊢ ( 𝐴 ∈ ( 1 ... 𝑉 ) → 𝐴 ∈ ℕ ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 9 |
|
nnm1nn0 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 11 |
|
nn0nnaddcl |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℕ0 ∧ 𝑉 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
| 12 |
10 1 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
| 13 |
2 12
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) |
| 14 |
6 13
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ) |
| 15 |
14
|
nnred |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℝ ) |
| 16 |
8 1
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ∈ ℕ ) |
| 17 |
2 16
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ∈ ℕ ) |
| 18 |
17
|
nnred |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ∈ ℝ ) |
| 19 |
|
2nn |
⊢ 2 ∈ ℕ |
| 20 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑉 ∈ ℕ ) → ( 2 · 𝑉 ) ∈ ℕ ) |
| 21 |
19 1 20
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℕ ) |
| 22 |
2 21
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℕ ) |
| 23 |
22
|
nnred |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℝ ) |
| 24 |
|
elfzle2 |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → 𝐵 ≤ 𝑊 ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ 𝑊 ) |
| 26 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 27 |
|
nnre |
⊢ ( 𝑊 ∈ ℕ → 𝑊 ∈ ℝ ) |
| 28 |
|
nnre |
⊢ ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℝ ) |
| 29 |
|
leadd1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑊 ∈ ℝ ∧ ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℝ ) → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 30 |
26 27 28 29
|
syl3an |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑊 ∈ ℕ ∧ ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 31 |
6 2 13 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝑊 ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 32 |
25 31
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 33 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
| 34 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 35 |
12
|
nncnd |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℂ ) |
| 36 |
33 34 35
|
adddid |
⊢ ( 𝜑 → ( 𝑊 · ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 37 |
10
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 38 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 39 |
34 37 38
|
addassd |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 − 1 ) ) + 𝑉 ) = ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) |
| 40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 41 |
8
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 42 |
|
pncan3 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + ( 𝐴 − 1 ) ) = 𝐴 ) |
| 43 |
40 41 42
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( 𝐴 − 1 ) ) = 𝐴 ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 + ( 𝐴 − 1 ) ) + 𝑉 ) = ( 𝐴 + 𝑉 ) ) |
| 45 |
39 44
|
eqtr3d |
⊢ ( 𝜑 → ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) = ( 𝐴 + 𝑉 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 · ( 1 + ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( 𝑊 · ( 𝐴 + 𝑉 ) ) ) |
| 47 |
33
|
mulridd |
⊢ ( 𝜑 → ( 𝑊 · 1 ) = 𝑊 ) |
| 48 |
47
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 49 |
36 46 48
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 50 |
32 49
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ) |
| 51 |
8
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 52 |
1
|
nnred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
| 53 |
|
elfzle2 |
⊢ ( 𝐴 ∈ ( 1 ... 𝑉 ) → 𝐴 ≤ 𝑉 ) |
| 54 |
3 53
|
syl |
⊢ ( 𝜑 → 𝐴 ≤ 𝑉 ) |
| 55 |
51 52 52 54
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ≤ ( 𝑉 + 𝑉 ) ) |
| 56 |
38
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑉 ) = ( 𝑉 + 𝑉 ) ) |
| 57 |
55 56
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ) |
| 58 |
16
|
nnred |
⊢ ( 𝜑 → ( 𝐴 + 𝑉 ) ∈ ℝ ) |
| 59 |
21
|
nnred |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℝ ) |
| 60 |
2
|
nnred |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 61 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑊 ) |
| 62 |
|
lemul2 |
⊢ ( ( ( 𝐴 + 𝑉 ) ∈ ℝ ∧ ( 2 · 𝑉 ) ∈ ℝ ∧ ( 𝑊 ∈ ℝ ∧ 0 < 𝑊 ) ) → ( ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 63 |
58 59 60 61 62
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 64 |
57 63
|
mpbid |
⊢ ( 𝜑 → ( 𝑊 · ( 𝐴 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) |
| 65 |
15 18 23 50 64
|
letrd |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) |
| 66 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 67 |
14 66
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 68 |
22
|
nnzd |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) |
| 69 |
|
elfz5 |
⊢ ( ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 70 |
67 68 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 71 |
65 70
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |