Metamath Proof Explorer


Theorem vdwlem3

Description: Lemma for vdw . (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φ V
vdwlem3.w φ W
vdwlem3.a φ A 1 V
vdwlem3.b φ B 1 W
Assertion vdwlem3 φ B + W A - 1 + V 1 W 2 V

Proof

Step Hyp Ref Expression
1 vdwlem3.v φ V
2 vdwlem3.w φ W
3 vdwlem3.a φ A 1 V
4 vdwlem3.b φ B 1 W
5 elfznn B 1 W B
6 4 5 syl φ B
7 elfznn A 1 V A
8 3 7 syl φ A
9 nnm1nn0 A A 1 0
10 8 9 syl φ A 1 0
11 nn0nnaddcl A 1 0 V A - 1 + V
12 10 1 11 syl2anc φ A - 1 + V
13 2 12 nnmulcld φ W A - 1 + V
14 6 13 nnaddcld φ B + W A - 1 + V
15 14 nnred φ B + W A - 1 + V
16 8 1 nnaddcld φ A + V
17 2 16 nnmulcld φ W A + V
18 17 nnred φ W A + V
19 2nn 2
20 nnmulcl 2 V 2 V
21 19 1 20 sylancr φ 2 V
22 2 21 nnmulcld φ W 2 V
23 22 nnred φ W 2 V
24 elfzle2 B 1 W B W
25 4 24 syl φ B W
26 nnre B B
27 nnre W W
28 nnre W A - 1 + V W A - 1 + V
29 leadd1 B W W A - 1 + V B W B + W A - 1 + V W + W A - 1 + V
30 26 27 28 29 syl3an B W W A - 1 + V B W B + W A - 1 + V W + W A - 1 + V
31 6 2 13 30 syl3anc φ B W B + W A - 1 + V W + W A - 1 + V
32 25 31 mpbid φ B + W A - 1 + V W + W A - 1 + V
33 2 nncnd φ W
34 1cnd φ 1
35 12 nncnd φ A - 1 + V
36 33 34 35 adddid φ W 1 + A 1 + V = W 1 + W A - 1 + V
37 10 nn0cnd φ A 1
38 1 nncnd φ V
39 34 37 38 addassd φ 1 + A 1 + V = 1 + A 1 + V
40 ax-1cn 1
41 8 nncnd φ A
42 pncan3 1 A 1 + A - 1 = A
43 40 41 42 sylancr φ 1 + A - 1 = A
44 43 oveq1d φ 1 + A 1 + V = A + V
45 39 44 eqtr3d φ 1 + A 1 + V = A + V
46 45 oveq2d φ W 1 + A 1 + V = W A + V
47 33 mulid1d φ W 1 = W
48 47 oveq1d φ W 1 + W A - 1 + V = W + W A - 1 + V
49 36 46 48 3eqtr3d φ W A + V = W + W A - 1 + V
50 32 49 breqtrrd φ B + W A - 1 + V W A + V
51 8 nnred φ A
52 1 nnred φ V
53 elfzle2 A 1 V A V
54 3 53 syl φ A V
55 51 52 52 54 leadd1dd φ A + V V + V
56 38 2timesd φ 2 V = V + V
57 55 56 breqtrrd φ A + V 2 V
58 16 nnred φ A + V
59 21 nnred φ 2 V
60 2 nnred φ W
61 2 nngt0d φ 0 < W
62 lemul2 A + V 2 V W 0 < W A + V 2 V W A + V W 2 V
63 58 59 60 61 62 syl112anc φ A + V 2 V W A + V W 2 V
64 57 63 mpbid φ W A + V W 2 V
65 15 18 23 50 64 letrd φ B + W A - 1 + V W 2 V
66 nnuz = 1
67 14 66 eleqtrdi φ B + W A - 1 + V 1
68 22 nnzd φ W 2 V
69 elfz5 B + W A - 1 + V 1 W 2 V B + W A - 1 + V 1 W 2 V B + W A - 1 + V W 2 V
70 67 68 69 syl2anc φ B + W A - 1 + V 1 W 2 V B + W A - 1 + V W 2 V
71 65 70 mpbird φ B + W A - 1 + V 1 W 2 V