Description: Lemma for vdw . (Contributed by Mario Carneiro, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwlem3.v | |
|
vdwlem3.w | |
||
vdwlem3.a | |
||
vdwlem3.b | |
||
Assertion | vdwlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem3.v | |
|
2 | vdwlem3.w | |
|
3 | vdwlem3.a | |
|
4 | vdwlem3.b | |
|
5 | elfznn | |
|
6 | 4 5 | syl | |
7 | elfznn | |
|
8 | 3 7 | syl | |
9 | nnm1nn0 | |
|
10 | 8 9 | syl | |
11 | nn0nnaddcl | |
|
12 | 10 1 11 | syl2anc | |
13 | 2 12 | nnmulcld | |
14 | 6 13 | nnaddcld | |
15 | 14 | nnred | |
16 | 8 1 | nnaddcld | |
17 | 2 16 | nnmulcld | |
18 | 17 | nnred | |
19 | 2nn | |
|
20 | nnmulcl | |
|
21 | 19 1 20 | sylancr | |
22 | 2 21 | nnmulcld | |
23 | 22 | nnred | |
24 | elfzle2 | |
|
25 | 4 24 | syl | |
26 | nnre | |
|
27 | nnre | |
|
28 | nnre | |
|
29 | leadd1 | |
|
30 | 26 27 28 29 | syl3an | |
31 | 6 2 13 30 | syl3anc | |
32 | 25 31 | mpbid | |
33 | 2 | nncnd | |
34 | 1cnd | |
|
35 | 12 | nncnd | |
36 | 33 34 35 | adddid | |
37 | 10 | nn0cnd | |
38 | 1 | nncnd | |
39 | 34 37 38 | addassd | |
40 | ax-1cn | |
|
41 | 8 | nncnd | |
42 | pncan3 | |
|
43 | 40 41 42 | sylancr | |
44 | 43 | oveq1d | |
45 | 39 44 | eqtr3d | |
46 | 45 | oveq2d | |
47 | 33 | mulridd | |
48 | 47 | oveq1d | |
49 | 36 46 48 | 3eqtr3d | |
50 | 32 49 | breqtrrd | |
51 | 8 | nnred | |
52 | 1 | nnred | |
53 | elfzle2 | |
|
54 | 3 53 | syl | |
55 | 51 52 52 54 | leadd1dd | |
56 | 38 | 2timesd | |
57 | 55 56 | breqtrrd | |
58 | 16 | nnred | |
59 | 21 | nnred | |
60 | 2 | nnred | |
61 | 2 | nngt0d | |
62 | lemul2 | |
|
63 | 58 59 60 61 62 | syl112anc | |
64 | 57 63 | mpbid | |
65 | 15 18 23 50 64 | letrd | |
66 | nnuz | |
|
67 | 14 66 | eleqtrdi | |
68 | 22 | nnzd | |
69 | elfz5 | |
|
70 | 67 68 69 | syl2anc | |
71 | 65 70 | mpbird | |