Metamath Proof Explorer


Theorem vdwlem3

Description: Lemma for vdw . (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φV
vdwlem3.w φW
vdwlem3.a φA1V
vdwlem3.b φB1W
Assertion vdwlem3 φB+WA-1+V1W2V

Proof

Step Hyp Ref Expression
1 vdwlem3.v φV
2 vdwlem3.w φW
3 vdwlem3.a φA1V
4 vdwlem3.b φB1W
5 elfznn B1WB
6 4 5 syl φB
7 elfznn A1VA
8 3 7 syl φA
9 nnm1nn0 AA10
10 8 9 syl φA10
11 nn0nnaddcl A10VA-1+V
12 10 1 11 syl2anc φA-1+V
13 2 12 nnmulcld φWA-1+V
14 6 13 nnaddcld φB+WA-1+V
15 14 nnred φB+WA-1+V
16 8 1 nnaddcld φA+V
17 2 16 nnmulcld φWA+V
18 17 nnred φWA+V
19 2nn 2
20 nnmulcl 2V2V
21 19 1 20 sylancr φ2V
22 2 21 nnmulcld φW2V
23 22 nnred φW2V
24 elfzle2 B1WBW
25 4 24 syl φBW
26 nnre BB
27 nnre WW
28 nnre WA-1+VWA-1+V
29 leadd1 BWWA-1+VBWB+WA-1+VW+WA-1+V
30 26 27 28 29 syl3an BWWA-1+VBWB+WA-1+VW+WA-1+V
31 6 2 13 30 syl3anc φBWB+WA-1+VW+WA-1+V
32 25 31 mpbid φB+WA-1+VW+WA-1+V
33 2 nncnd φW
34 1cnd φ1
35 12 nncnd φA-1+V
36 33 34 35 adddid φW1+A1+V=W1+WA-1+V
37 10 nn0cnd φA1
38 1 nncnd φV
39 34 37 38 addassd φ1+A1+V=1+A1+V
40 ax-1cn 1
41 8 nncnd φA
42 pncan3 1A1+A-1=A
43 40 41 42 sylancr φ1+A-1=A
44 43 oveq1d φ1+A1+V=A+V
45 39 44 eqtr3d φ1+A1+V=A+V
46 45 oveq2d φW1+A1+V=WA+V
47 33 mulridd φW1=W
48 47 oveq1d φW1+WA-1+V=W+WA-1+V
49 36 46 48 3eqtr3d φWA+V=W+WA-1+V
50 32 49 breqtrrd φB+WA-1+VWA+V
51 8 nnred φA
52 1 nnred φV
53 elfzle2 A1VAV
54 3 53 syl φAV
55 51 52 52 54 leadd1dd φA+VV+V
56 38 2timesd φ2V=V+V
57 55 56 breqtrrd φA+V2V
58 16 nnred φA+V
59 21 nnred φ2V
60 2 nnred φW
61 2 nngt0d φ0<W
62 lemul2 A+V2VW0<WA+V2VWA+VW2V
63 58 59 60 61 62 syl112anc φA+V2VWA+VW2V
64 57 63 mpbid φWA+VW2V
65 15 18 23 50 64 letrd φB+WA-1+VW2V
66 nnuz =1
67 14 66 eleqtrdi φB+WA-1+V1
68 22 nnzd φW2V
69 elfz5 B+WA-1+V1W2VB+WA-1+V1W2VB+WA-1+VW2V
70 67 68 69 syl2anc φB+WA-1+V1W2VB+WA-1+VW2V
71 65 70 mpbird φB+WA-1+V1W2V