Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwlem3.v | |
|
vdwlem3.w | |
||
vdwlem4.r | |
||
vdwlem4.h | |
||
vdwlem4.f | |
||
Assertion | vdwlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem3.v | |
|
2 | vdwlem3.w | |
|
3 | vdwlem4.r | |
|
4 | vdwlem4.h | |
|
5 | vdwlem4.f | |
|
6 | 4 | ad2antrr | |
7 | 1 | ad2antrr | |
8 | 2 | ad2antrr | |
9 | simplr | |
|
10 | simpr | |
|
11 | 7 8 9 10 | vdwlem3 | |
12 | 6 11 | ffvelcdmd | |
13 | 12 | fmpttd | |
14 | 3 | adantr | |
15 | ovex | |
|
16 | elmapg | |
|
17 | 14 15 16 | sylancl | |
18 | 13 17 | mpbird | |
19 | 18 5 | fmptd | |