Metamath Proof Explorer


Theorem vdwlem4

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φV
vdwlem3.w φW
vdwlem4.r φRFin
vdwlem4.h φH:1W2VR
vdwlem4.f F=x1Vy1WHy+Wx-1+V
Assertion vdwlem4 φF:1VR1W

Proof

Step Hyp Ref Expression
1 vdwlem3.v φV
2 vdwlem3.w φW
3 vdwlem4.r φRFin
4 vdwlem4.h φH:1W2VR
5 vdwlem4.f F=x1Vy1WHy+Wx-1+V
6 4 ad2antrr φx1Vy1WH:1W2VR
7 1 ad2antrr φx1Vy1WV
8 2 ad2antrr φx1Vy1WW
9 simplr φx1Vy1Wx1V
10 simpr φx1Vy1Wy1W
11 7 8 9 10 vdwlem3 φx1Vy1Wy+Wx-1+V1W2V
12 6 11 ffvelcdmd φx1Vy1WHy+Wx-1+VR
13 12 fmpttd φx1Vy1WHy+Wx-1+V:1WR
14 3 adantr φx1VRFin
15 ovex 1WV
16 elmapg RFin1WVy1WHy+Wx-1+VR1Wy1WHy+Wx-1+V:1WR
17 14 15 16 sylancl φx1Vy1WHy+Wx-1+VR1Wy1WHy+Wx-1+V:1WR
18 13 17 mpbird φx1Vy1WHy+Wx-1+VR1W
19 18 5 fmptd φF:1VR1W