Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vdwlem3.v | |
|
vdwlem3.w | |
||
vdwlem4.r | |
||
vdwlem4.h | |
||
vdwlem4.f | |
||
vdwlem7.m | |
||
vdwlem7.g | |
||
vdwlem7.k | |
||
vdwlem7.a | |
||
vdwlem7.d | |
||
vdwlem7.s | |
||
vdwlem6.b | |
||
vdwlem6.e | |
||
vdwlem6.s | |
||
vdwlem6.j | |
||
vdwlem6.r | |
||
vdwlem6.t | |
||
vdwlem6.p | |
||
Assertion | vdwlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem3.v | |
|
2 | vdwlem3.w | |
|
3 | vdwlem4.r | |
|
4 | vdwlem4.h | |
|
5 | vdwlem4.f | |
|
6 | vdwlem7.m | |
|
7 | vdwlem7.g | |
|
8 | vdwlem7.k | |
|
9 | vdwlem7.a | |
|
10 | vdwlem7.d | |
|
11 | vdwlem7.s | |
|
12 | vdwlem6.b | |
|
13 | vdwlem6.e | |
|
14 | vdwlem6.s | |
|
15 | vdwlem6.j | |
|
16 | vdwlem6.r | |
|
17 | vdwlem6.t | |
|
18 | vdwlem6.p | |
|
19 | 2 | nnnn0d | |
20 | 1 | nncnd | |
21 | 10 | nncnd | |
22 | 20 21 | subcld | |
23 | 9 | nncnd | |
24 | 22 23 | npcand | |
25 | 20 21 23 | subsub4d | |
26 | 21 23 | addcomd | |
27 | 26 | oveq2d | |
28 | 25 27 | eqtrd | |
29 | cnvimass | |
|
30 | 1 2 3 4 5 | vdwlem4 | |
31 | 29 30 | fssdm | |
32 | ssun2 | |
|
33 | uz2m1nn | |
|
34 | 8 33 | syl | |
35 | 9 10 | nnaddcld | |
36 | vdwapid1 | |
|
37 | 34 35 10 36 | syl3anc | |
38 | 32 37 | sselid | |
39 | eluz2nn | |
|
40 | 8 39 | syl | |
41 | 40 | nncnd | |
42 | ax-1cn | |
|
43 | npcan | |
|
44 | 41 42 43 | sylancl | |
45 | 44 | fveq2d | |
46 | 45 | oveqd | |
47 | nnm1nn0 | |
|
48 | 40 47 | syl | |
49 | vdwapun | |
|
50 | 48 9 10 49 | syl3anc | |
51 | 46 50 | eqtr3d | |
52 | 38 51 | eleqtrrd | |
53 | 11 52 | sseldd | |
54 | 31 53 | sseldd | |
55 | elfzuz3 | |
|
56 | 54 55 | syl | |
57 | uznn0sub | |
|
58 | 56 57 | syl | |
59 | 28 58 | eqeltrd | |
60 | nn0nnaddcl | |
|
61 | 59 9 60 | syl2anc | |
62 | 24 61 | eqeltrrd | |
63 | 9 62 | nnaddcld | |
64 | nnm1nn0 | |
|
65 | 63 64 | syl | |
66 | 19 65 | nn0mulcld | |
67 | nnnn0addcl | |
|
68 | 12 66 67 | syl2anc | |
69 | 17 68 | eqeltrid | |