Metamath Proof Explorer


Theorem vdwlem5

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φV
vdwlem3.w φW
vdwlem4.r φRFin
vdwlem4.h φH:1W2VR
vdwlem4.f F=x1Vy1WHy+Wx-1+V
vdwlem7.m φM
vdwlem7.g φG:1WR
vdwlem7.k φK2
vdwlem7.a φA
vdwlem7.d φD
vdwlem7.s φAAPKDF-1G
vdwlem6.b φB
vdwlem6.e φE:1M
vdwlem6.s φi1MB+EiAPKEiG-1GB+Ei
vdwlem6.j J=i1MGB+Ei
vdwlem6.r φranJ=M
vdwlem6.t T=B+WA+VD-1
vdwlem6.p P=j1M+1ifj=M+10Ej+WD
Assertion vdwlem5 φT

Proof

Step Hyp Ref Expression
1 vdwlem3.v φV
2 vdwlem3.w φW
3 vdwlem4.r φRFin
4 vdwlem4.h φH:1W2VR
5 vdwlem4.f F=x1Vy1WHy+Wx-1+V
6 vdwlem7.m φM
7 vdwlem7.g φG:1WR
8 vdwlem7.k φK2
9 vdwlem7.a φA
10 vdwlem7.d φD
11 vdwlem7.s φAAPKDF-1G
12 vdwlem6.b φB
13 vdwlem6.e φE:1M
14 vdwlem6.s φi1MB+EiAPKEiG-1GB+Ei
15 vdwlem6.j J=i1MGB+Ei
16 vdwlem6.r φranJ=M
17 vdwlem6.t T=B+WA+VD-1
18 vdwlem6.p P=j1M+1ifj=M+10Ej+WD
19 2 nnnn0d φW0
20 1 nncnd φV
21 10 nncnd φD
22 20 21 subcld φVD
23 9 nncnd φA
24 22 23 npcand φVD-A+A=VD
25 20 21 23 subsub4d φV-D-A=VD+A
26 21 23 addcomd φD+A=A+D
27 26 oveq2d φVD+A=VA+D
28 25 27 eqtrd φV-D-A=VA+D
29 cnvimass F-1GdomF
30 1 2 3 4 5 vdwlem4 φF:1VR1W
31 29 30 fssdm φF-1G1V
32 ssun2 A+DAPK1DAA+DAPK1D
33 uz2m1nn K2K1
34 8 33 syl φK1
35 9 10 nnaddcld φA+D
36 vdwapid1 K1A+DDA+DA+DAPK1D
37 34 35 10 36 syl3anc φA+DA+DAPK1D
38 32 37 sselid φA+DAA+DAPK1D
39 eluz2nn K2K
40 8 39 syl φK
41 40 nncnd φK
42 ax-1cn 1
43 npcan K1K-1+1=K
44 41 42 43 sylancl φK-1+1=K
45 44 fveq2d φAPK-1+1=APK
46 45 oveqd φAAPK-1+1D=AAPKD
47 nnm1nn0 KK10
48 40 47 syl φK10
49 vdwapun K10ADAAPK-1+1D=AA+DAPK1D
50 48 9 10 49 syl3anc φAAPK-1+1D=AA+DAPK1D
51 46 50 eqtr3d φAAPKD=AA+DAPK1D
52 38 51 eleqtrrd φA+DAAPKD
53 11 52 sseldd φA+DF-1G
54 31 53 sseldd φA+D1V
55 elfzuz3 A+D1VVA+D
56 54 55 syl φVA+D
57 uznn0sub VA+DVA+D0
58 56 57 syl φVA+D0
59 28 58 eqeltrd φV-D-A0
60 nn0nnaddcl V-D-A0AVD-A+A
61 59 9 60 syl2anc φVD-A+A
62 24 61 eqeltrrd φVD
63 9 62 nnaddcld φA+V-D
64 nnm1nn0 A+V-DA+VD-10
65 63 64 syl φA+VD-10
66 19 65 nn0mulcld φWA+VD-10
67 nnnn0addcl BWA+VD-10B+WA+VD-1
68 12 66 67 syl2anc φB+WA+VD-1
69 17 68 eqeltrid φT