Metamath Proof Explorer


Theorem vdwlem6

Description: Lemma for vdw . (Contributed by Mario Carneiro, 13-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φ V
vdwlem3.w φ W
vdwlem4.r φ R Fin
vdwlem4.h φ H : 1 W 2 V R
vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
vdwlem7.m φ M
vdwlem7.g φ G : 1 W R
vdwlem7.k φ K 2
vdwlem7.a φ A
vdwlem7.d φ D
vdwlem7.s φ A AP K D F -1 G
vdwlem6.b φ B
vdwlem6.e φ E : 1 M
vdwlem6.s φ i 1 M B + E i AP K E i G -1 G B + E i
vdwlem6.j J = i 1 M G B + E i
vdwlem6.r φ ran J = M
vdwlem6.t T = B + W A + V D - 1
vdwlem6.p P = j 1 M + 1 if j = M + 1 0 E j + W D
Assertion vdwlem6 φ M + 1 K PolyAP H K + 1 MonoAP G

Proof

Step Hyp Ref Expression
1 vdwlem3.v φ V
2 vdwlem3.w φ W
3 vdwlem4.r φ R Fin
4 vdwlem4.h φ H : 1 W 2 V R
5 vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
6 vdwlem7.m φ M
7 vdwlem7.g φ G : 1 W R
8 vdwlem7.k φ K 2
9 vdwlem7.a φ A
10 vdwlem7.d φ D
11 vdwlem7.s φ A AP K D F -1 G
12 vdwlem6.b φ B
13 vdwlem6.e φ E : 1 M
14 vdwlem6.s φ i 1 M B + E i AP K E i G -1 G B + E i
15 vdwlem6.j J = i 1 M G B + E i
16 vdwlem6.r φ ran J = M
17 vdwlem6.t T = B + W A + V D - 1
18 vdwlem6.p P = j 1 M + 1 if j = M + 1 0 E j + W D
19 fvex G B + E i V
20 19 15 fnmpti J Fn 1 M
21 fvelrnb J Fn 1 M G B ran J m 1 M J m = G B
22 20 21 ax-mp G B ran J m 1 M J m = G B
23 3 adantr φ m 1 M J m = G B R Fin
24 eluz2nn K 2 K
25 8 24 syl φ K
26 25 adantr φ m 1 M J m = G B K
27 2 adantr φ m 1 M J m = G B W
28 7 adantr φ m 1 M J m = G B G : 1 W R
29 12 adantr φ m 1 M J m = G B B
30 6 adantr φ m 1 M J m = G B M
31 13 adantr φ m 1 M J m = G B E : 1 M
32 14 adantr φ m 1 M J m = G B i 1 M B + E i AP K E i G -1 G B + E i
33 simprl φ m 1 M J m = G B m 1 M
34 simprr φ m 1 M J m = G B J m = G B
35 fveq2 i = m E i = E m
36 35 oveq2d i = m B + E i = B + E m
37 36 fveq2d i = m G B + E i = G B + E m
38 fvex G B + E m V
39 37 15 38 fvmpt m 1 M J m = G B + E m
40 33 39 syl φ m 1 M J m = G B J m = G B + E m
41 34 40 eqtr3d φ m 1 M J m = G B G B = G B + E m
42 23 26 27 28 29 30 31 32 33 41 vdwlem1 φ m 1 M J m = G B K + 1 MonoAP G
43 42 rexlimdvaa φ m 1 M J m = G B K + 1 MonoAP G
44 22 43 syl5bi φ G B ran J K + 1 MonoAP G
45 44 imp φ G B ran J K + 1 MonoAP G
46 45 olcd φ G B ran J M + 1 K PolyAP H K + 1 MonoAP G
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 vdwlem5 φ T
48 47 adantr φ ¬ G B ran J T
49 0nn0 0 0
50 49 a1i φ ¬ G B ran J j 1 M + 1 j = M + 1 0 0
51 nnuz = 1
52 6 51 eleqtrdi φ M 1
53 52 adantr φ ¬ G B ran J M 1
54 elfzp1 M 1 j 1 M + 1 j 1 M j = M + 1
55 53 54 syl φ ¬ G B ran J j 1 M + 1 j 1 M j = M + 1
56 55 biimpa φ ¬ G B ran J j 1 M + 1 j 1 M j = M + 1
57 56 ord φ ¬ G B ran J j 1 M + 1 ¬ j 1 M j = M + 1
58 57 con1d φ ¬ G B ran J j 1 M + 1 ¬ j = M + 1 j 1 M
59 58 imp φ ¬ G B ran J j 1 M + 1 ¬ j = M + 1 j 1 M
60 13 ad2antrr φ ¬ G B ran J j 1 M + 1 E : 1 M
61 60 ffvelrnda φ ¬ G B ran J j 1 M + 1 j 1 M E j
62 61 nnnn0d φ ¬ G B ran J j 1 M + 1 j 1 M E j 0
63 59 62 syldan φ ¬ G B ran J j 1 M + 1 ¬ j = M + 1 E j 0
64 50 63 ifclda φ ¬ G B ran J j 1 M + 1 if j = M + 1 0 E j 0
65 2 10 nnmulcld φ W D
66 65 ad2antrr φ ¬ G B ran J j 1 M + 1 W D
67 nn0nnaddcl if j = M + 1 0 E j 0 W D if j = M + 1 0 E j + W D
68 64 66 67 syl2anc φ ¬ G B ran J j 1 M + 1 if j = M + 1 0 E j + W D
69 68 18 fmptd φ ¬ G B ran J P : 1 M + 1
70 nnex V
71 ovex 1 M + 1 V
72 70 71 elmap P 1 M + 1 P : 1 M + 1
73 69 72 sylibr φ ¬ G B ran J P 1 M + 1
74 elfzp1 M 1 i 1 M + 1 i 1 M i = M + 1
75 52 74 syl φ i 1 M + 1 i 1 M i = M + 1
76 12 adantr φ i 1 M B
77 76 nncnd φ i 1 M B
78 77 adantr φ i 1 M m 0 K 1 B
79 13 ffvelrnda φ i 1 M E i
80 79 nncnd φ i 1 M E i
81 80 adantr φ i 1 M m 0 K 1 E i
82 78 81 addcld φ i 1 M m 0 K 1 B + E i
83 nnm1nn0 A A 1 0
84 9 83 syl φ A 1 0
85 nn0nnaddcl A 1 0 V A - 1 + V
86 84 1 85 syl2anc φ A - 1 + V
87 2 86 nnmulcld φ W A - 1 + V
88 87 nncnd φ W A - 1 + V
89 88 ad2antrr φ i 1 M m 0 K 1 W A - 1 + V
90 elfznn0 m 0 K 1 m 0
91 90 adantl φ m 0 K 1 m 0
92 91 nn0cnd φ m 0 K 1 m
93 92 adantlr φ i 1 M m 0 K 1 m
94 93 81 mulcld φ i 1 M m 0 K 1 m E i
95 65 nnnn0d φ W D 0
96 95 adantr φ m 0 K 1 W D 0
97 91 96 nn0mulcld φ m 0 K 1 m W D 0
98 97 nn0cnd φ m 0 K 1 m W D
99 98 adantlr φ i 1 M m 0 K 1 m W D
100 82 89 94 99 add4d φ i 1 M m 0 K 1 B + E i + W A - 1 + V + m E i + m W D = B + E i + m E i + W A - 1 + V + m W D
101 65 nncnd φ W D
102 101 ad2antrr φ i 1 M m 0 K 1 W D
103 93 81 102 adddid φ i 1 M m 0 K 1 m E i + W D = m E i + m W D
104 103 oveq2d φ i 1 M m 0 K 1 B + E i + W A - 1 + V + m E i + W D = B + E i + W A - 1 + V + m E i + m W D
105 2 nncnd φ W
106 105 adantr φ m 0 K 1 W
107 86 nncnd φ A - 1 + V
108 107 adantr φ m 0 K 1 A - 1 + V
109 10 nncnd φ D
110 109 adantr φ m 0 K 1 D
111 92 110 mulcld φ m 0 K 1 m D
112 106 108 111 adddid φ m 0 K 1 W A 1 + V + m D = W A - 1 + V + W m D
113 9 nncnd φ A
114 113 adantr φ m 0 K 1 A
115 1cnd φ m 0 K 1 1
116 114 111 115 addsubd φ m 0 K 1 A + m D - 1 = A - 1 + m D
117 116 oveq1d φ m 0 K 1 A + m D - 1 + V = A 1 + m D + V
118 84 nn0cnd φ A 1
119 118 adantr φ m 0 K 1 A 1
120 1 nncnd φ V
121 120 adantr φ m 0 K 1 V
122 119 111 121 add32d φ m 0 K 1 A 1 + m D + V = A 1 + V + m D
123 117 122 eqtrd φ m 0 K 1 A + m D - 1 + V = A 1 + V + m D
124 123 oveq2d φ m 0 K 1 W A + m D - 1 + V = W A 1 + V + m D
125 92 106 110 mul12d φ m 0 K 1 m W D = W m D
126 125 oveq2d φ m 0 K 1 W A - 1 + V + m W D = W A - 1 + V + W m D
127 112 124 126 3eqtr4d φ m 0 K 1 W A + m D - 1 + V = W A - 1 + V + m W D
128 127 adantlr φ i 1 M m 0 K 1 W A + m D - 1 + V = W A - 1 + V + m W D
129 128 oveq2d φ i 1 M m 0 K 1 B + E i + m E i + W A + m D - 1 + V = B + E i + m E i + W A - 1 + V + m W D
130 100 104 129 3eqtr4d φ i 1 M m 0 K 1 B + E i + W A - 1 + V + m E i + W D = B + E i + m E i + W A + m D - 1 + V
131 1 ad2antrr φ i 1 M m 0 K 1 V
132 2 ad2antrr φ i 1 M m 0 K 1 W
133 11 adantr φ m 0 K 1 A AP K D F -1 G
134 eqid A + m D = A + m D
135 oveq1 n = m n D = m D
136 135 oveq2d n = m A + n D = A + m D
137 136 rspceeqv m 0 K 1 A + m D = A + m D n 0 K 1 A + m D = A + n D
138 134 137 mpan2 m 0 K 1 n 0 K 1 A + m D = A + n D
139 25 nnnn0d φ K 0
140 vdwapval K 0 A D A + m D A AP K D n 0 K 1 A + m D = A + n D
141 139 9 10 140 syl3anc φ A + m D A AP K D n 0 K 1 A + m D = A + n D
142 141 biimpar φ n 0 K 1 A + m D = A + n D A + m D A AP K D
143 138 142 sylan2 φ m 0 K 1 A + m D A AP K D
144 133 143 sseldd φ m 0 K 1 A + m D F -1 G
145 1 2 3 4 5 vdwlem4 φ F : 1 V R 1 W
146 145 ffnd φ F Fn 1 V
147 fniniseg F Fn 1 V A + m D F -1 G A + m D 1 V F A + m D = G
148 146 147 syl φ A + m D F -1 G A + m D 1 V F A + m D = G
149 148 biimpa φ A + m D F -1 G A + m D 1 V F A + m D = G
150 144 149 syldan φ m 0 K 1 A + m D 1 V F A + m D = G
151 150 simpld φ m 0 K 1 A + m D 1 V
152 151 adantlr φ i 1 M m 0 K 1 A + m D 1 V
153 14 r19.21bi φ i 1 M B + E i AP K E i G -1 G B + E i
154 153 adantr φ i 1 M m 0 K 1 B + E i AP K E i G -1 G B + E i
155 eqid B + E i + m E i = B + E i + m E i
156 oveq1 n = m n E i = m E i
157 156 oveq2d n = m B + E i + n E i = B + E i + m E i
158 157 rspceeqv m 0 K 1 B + E i + m E i = B + E i + m E i n 0 K 1 B + E i + m E i = B + E i + n E i
159 155 158 mpan2 m 0 K 1 n 0 K 1 B + E i + m E i = B + E i + n E i
160 25 adantr φ i 1 M K
161 160 nnnn0d φ i 1 M K 0
162 76 79 nnaddcld φ i 1 M B + E i
163 vdwapval K 0 B + E i E i B + E i + m E i B + E i AP K E i n 0 K 1 B + E i + m E i = B + E i + n E i
164 161 162 79 163 syl3anc φ i 1 M B + E i + m E i B + E i AP K E i n 0 K 1 B + E i + m E i = B + E i + n E i
165 164 biimpar φ i 1 M n 0 K 1 B + E i + m E i = B + E i + n E i B + E i + m E i B + E i AP K E i
166 159 165 sylan2 φ i 1 M m 0 K 1 B + E i + m E i B + E i AP K E i
167 154 166 sseldd φ i 1 M m 0 K 1 B + E i + m E i G -1 G B + E i
168 7 ffnd φ G Fn 1 W
169 168 adantr φ i 1 M G Fn 1 W
170 fniniseg G Fn 1 W B + E i + m E i G -1 G B + E i B + E i + m E i 1 W G B + E i + m E i = G B + E i
171 169 170 syl φ i 1 M B + E i + m E i G -1 G B + E i B + E i + m E i 1 W G B + E i + m E i = G B + E i
172 171 biimpa φ i 1 M B + E i + m E i G -1 G B + E i B + E i + m E i 1 W G B + E i + m E i = G B + E i
173 167 172 syldan φ i 1 M m 0 K 1 B + E i + m E i 1 W G B + E i + m E i = G B + E i
174 173 simpld φ i 1 M m 0 K 1 B + E i + m E i 1 W
175 131 132 152 174 vdwlem3 φ i 1 M m 0 K 1 B + E i + m E i + W A + m D - 1 + V 1 W 2 V
176 130 175 eqeltrd φ i 1 M m 0 K 1 B + E i + W A - 1 + V + m E i + W D 1 W 2 V
177 fvoveq1 y = B + E i + m E i H y + W A + m D - 1 + V = H B + E i + m E i + W A + m D - 1 + V
178 eqid y 1 W H y + W A + m D - 1 + V = y 1 W H y + W A + m D - 1 + V
179 fvex H B + E i + m E i + W A + m D - 1 + V V
180 177 178 179 fvmpt B + E i + m E i 1 W y 1 W H y + W A + m D - 1 + V B + E i + m E i = H B + E i + m E i + W A + m D - 1 + V
181 174 180 syl φ i 1 M m 0 K 1 y 1 W H y + W A + m D - 1 + V B + E i + m E i = H B + E i + m E i + W A + m D - 1 + V
182 173 simprd φ i 1 M m 0 K 1 G B + E i + m E i = G B + E i
183 150 simprd φ m 0 K 1 F A + m D = G
184 oveq1 x = A + m D x 1 = A + m D - 1
185 184 oveq1d x = A + m D x - 1 + V = A + m D - 1 + V
186 185 oveq2d x = A + m D W x - 1 + V = W A + m D - 1 + V
187 186 oveq2d x = A + m D y + W x - 1 + V = y + W A + m D - 1 + V
188 187 fveq2d x = A + m D H y + W x - 1 + V = H y + W A + m D - 1 + V
189 188 mpteq2dv x = A + m D y 1 W H y + W x - 1 + V = y 1 W H y + W A + m D - 1 + V
190 ovex 1 W V
191 190 mptex y 1 W H y + W A + m D - 1 + V V
192 189 5 191 fvmpt A + m D 1 V F A + m D = y 1 W H y + W A + m D - 1 + V
193 151 192 syl φ m 0 K 1 F A + m D = y 1 W H y + W A + m D - 1 + V
194 183 193 eqtr3d φ m 0 K 1 G = y 1 W H y + W A + m D - 1 + V
195 194 adantlr φ i 1 M m 0 K 1 G = y 1 W H y + W A + m D - 1 + V
196 195 fveq1d φ i 1 M m 0 K 1 G B + E i + m E i = y 1 W H y + W A + m D - 1 + V B + E i + m E i
197 182 196 eqtr3d φ i 1 M m 0 K 1 G B + E i = y 1 W H y + W A + m D - 1 + V B + E i + m E i
198 130 fveq2d φ i 1 M m 0 K 1 H B + E i + W A - 1 + V + m E i + W D = H B + E i + m E i + W A + m D - 1 + V
199 181 197 198 3eqtr4rd φ i 1 M m 0 K 1 H B + E i + W A - 1 + V + m E i + W D = G B + E i
200 176 199 jca φ i 1 M m 0 K 1 B + E i + W A - 1 + V + m E i + W D 1 W 2 V H B + E i + W A - 1 + V + m E i + W D = G B + E i
201 eleq1 x = B + E i + W A - 1 + V + m E i + W D x 1 W 2 V B + E i + W A - 1 + V + m E i + W D 1 W 2 V
202 fveqeq2 x = B + E i + W A - 1 + V + m E i + W D H x = G B + E i H B + E i + W A - 1 + V + m E i + W D = G B + E i
203 201 202 anbi12d x = B + E i + W A - 1 + V + m E i + W D x 1 W 2 V H x = G B + E i B + E i + W A - 1 + V + m E i + W D 1 W 2 V H B + E i + W A - 1 + V + m E i + W D = G B + E i
204 200 203 syl5ibrcom φ i 1 M m 0 K 1 x = B + E i + W A - 1 + V + m E i + W D x 1 W 2 V H x = G B + E i
205 204 rexlimdva φ i 1 M m 0 K 1 x = B + E i + W A - 1 + V + m E i + W D x 1 W 2 V H x = G B + E i
206 87 adantr φ i 1 M W A - 1 + V
207 162 206 nnaddcld φ i 1 M B + E i + W A - 1 + V
208 65 adantr φ i 1 M W D
209 79 208 nnaddcld φ i 1 M E i + W D
210 vdwapval K 0 B + E i + W A - 1 + V E i + W D x B + E i + W A - 1 + V AP K E i + W D m 0 K 1 x = B + E i + W A - 1 + V + m E i + W D
211 161 207 209 210 syl3anc φ i 1 M x B + E i + W A - 1 + V AP K E i + W D m 0 K 1 x = B + E i + W A - 1 + V + m E i + W D
212 4 ffnd φ H Fn 1 W 2 V
213 212 adantr φ i 1 M H Fn 1 W 2 V
214 fniniseg H Fn 1 W 2 V x H -1 G B + E i x 1 W 2 V H x = G B + E i
215 213 214 syl φ i 1 M x H -1 G B + E i x 1 W 2 V H x = G B + E i
216 205 211 215 3imtr4d φ i 1 M x B + E i + W A - 1 + V AP K E i + W D x H -1 G B + E i
217 216 ssrdv φ i 1 M B + E i + W A - 1 + V AP K E i + W D H -1 G B + E i
218 ssun1 1 M 1 M M + 1
219 fzsuc M 1 1 M + 1 = 1 M M + 1
220 52 219 syl φ 1 M + 1 = 1 M M + 1
221 218 220 sseqtrrid φ 1 M 1 M + 1
222 221 sselda φ i 1 M i 1 M + 1
223 eqeq1 j = i j = M + 1 i = M + 1
224 fveq2 j = i E j = E i
225 223 224 ifbieq2d j = i if j = M + 1 0 E j = if i = M + 1 0 E i
226 225 oveq1d j = i if j = M + 1 0 E j + W D = if i = M + 1 0 E i + W D
227 ovex if i = M + 1 0 E i + W D V
228 226 18 227 fvmpt i 1 M + 1 P i = if i = M + 1 0 E i + W D
229 222 228 syl φ i 1 M P i = if i = M + 1 0 E i + W D
230 6 nnred φ M
231 230 ltp1d φ M < M + 1
232 peano2re M M + 1
233 230 232 syl φ M + 1
234 230 233 ltnled φ M < M + 1 ¬ M + 1 M
235 231 234 mpbid φ ¬ M + 1 M
236 breq1 i = M + 1 i M M + 1 M
237 236 notbid i = M + 1 ¬ i M ¬ M + 1 M
238 235 237 syl5ibrcom φ i = M + 1 ¬ i M
239 238 con2d φ i M ¬ i = M + 1
240 elfzle2 i 1 M i M
241 239 240 impel φ i 1 M ¬ i = M + 1
242 iffalse ¬ i = M + 1 if i = M + 1 0 E i = E i
243 242 oveq1d ¬ i = M + 1 if i = M + 1 0 E i + W D = E i + W D
244 241 243 syl φ i 1 M if i = M + 1 0 E i + W D = E i + W D
245 229 244 eqtrd φ i 1 M P i = E i + W D
246 245 oveq2d φ i 1 M T + P i = T + E i + W D
247 47 nncnd φ T
248 247 adantr φ i 1 M T
249 101 adantr φ i 1 M W D
250 248 80 249 add12d φ i 1 M T + E i + W D = E i + T + W D
251 17 oveq1i T + W D = B + W A + V D - 1 + W D
252 12 nncnd φ B
253 120 109 subcld φ V D
254 113 253 addcld φ A + V - D
255 ax-1cn 1
256 subcl A + V - D 1 A + V D - 1
257 254 255 256 sylancl φ A + V D - 1
258 105 257 mulcld φ W A + V D - 1
259 252 258 101 addassd φ B + W A + V D - 1 + W D = B + W A + V D - 1 + W D
260 105 257 109 adddid φ W A + V - D - 1 + D = W A + V D - 1 + W D
261 113 253 109 addassd φ A + V D + D = A + V D + D
262 120 109 npcand φ V - D + D = V
263 262 oveq2d φ A + V D + D = A + V
264 261 263 eqtrd φ A + V D + D = A + V
265 264 oveq1d φ A + V - D + D - 1 = A + V - 1
266 1cnd φ 1
267 254 109 266 addsubd φ A + V - D + D - 1 = A + V - D - 1 + D
268 113 120 266 addsubd φ A + V - 1 = A - 1 + V
269 265 267 268 3eqtr3d φ A + V - D - 1 + D = A - 1 + V
270 269 oveq2d φ W A + V - D - 1 + D = W A - 1 + V
271 260 270 eqtr3d φ W A + V D - 1 + W D = W A - 1 + V
272 271 oveq2d φ B + W A + V D - 1 + W D = B + W A - 1 + V
273 259 272 eqtrd φ B + W A + V D - 1 + W D = B + W A - 1 + V
274 251 273 eqtrid φ T + W D = B + W A - 1 + V
275 274 oveq2d φ E i + T + W D = E i + B + W A - 1 + V
276 275 adantr φ i 1 M E i + T + W D = E i + B + W A - 1 + V
277 88 adantr φ i 1 M W A - 1 + V
278 80 77 277 addassd φ i 1 M E i + B + W A - 1 + V = E i + B + W A - 1 + V
279 80 77 addcomd φ i 1 M E i + B = B + E i
280 279 oveq1d φ i 1 M E i + B + W A - 1 + V = B + E i + W A - 1 + V
281 276 278 280 3eqtr2d φ i 1 M E i + T + W D = B + E i + W A - 1 + V
282 246 250 281 3eqtrd φ i 1 M T + P i = B + E i + W A - 1 + V
283 282 245 oveq12d φ i 1 M T + P i AP K P i = B + E i + W A - 1 + V AP K E i + W D
284 cnvimass G -1 G B + E i dom G
285 284 7 fssdm φ G -1 G B + E i 1 W
286 285 adantr φ i 1 M G -1 G B + E i 1 W
287 vdwapid1 K B + E i E i B + E i B + E i AP K E i
288 160 162 79 287 syl3anc φ i 1 M B + E i B + E i AP K E i
289 153 288 sseldd φ i 1 M B + E i G -1 G B + E i
290 286 289 sseldd φ i 1 M B + E i 1 W
291 fvoveq1 y = B + E i H y + W A - 1 + V = H B + E i + W A - 1 + V
292 eqid y 1 W H y + W A - 1 + V = y 1 W H y + W A - 1 + V
293 fvex H B + E i + W A - 1 + V V
294 291 292 293 fvmpt B + E i 1 W y 1 W H y + W A - 1 + V B + E i = H B + E i + W A - 1 + V
295 290 294 syl φ i 1 M y 1 W H y + W A - 1 + V B + E i = H B + E i + W A - 1 + V
296 vdwapid1 K A D A A AP K D
297 25 9 10 296 syl3anc φ A A AP K D
298 11 297 sseldd φ A F -1 G
299 fniniseg F Fn 1 V A F -1 G A 1 V F A = G
300 146 299 syl φ A F -1 G A 1 V F A = G
301 298 300 mpbid φ A 1 V F A = G
302 301 simprd φ F A = G
303 301 simpld φ A 1 V
304 oveq1 x = A x 1 = A 1
305 304 oveq1d x = A x - 1 + V = A - 1 + V
306 305 oveq2d x = A W x - 1 + V = W A - 1 + V
307 306 oveq2d x = A y + W x - 1 + V = y + W A - 1 + V
308 307 fveq2d x = A H y + W x - 1 + V = H y + W A - 1 + V
309 308 mpteq2dv x = A y 1 W H y + W x - 1 + V = y 1 W H y + W A - 1 + V
310 190 mptex y 1 W H y + W A - 1 + V V
311 309 5 310 fvmpt A 1 V F A = y 1 W H y + W A - 1 + V
312 303 311 syl φ F A = y 1 W H y + W A - 1 + V
313 302 312 eqtr3d φ G = y 1 W H y + W A - 1 + V
314 313 fveq1d φ G B + E i = y 1 W H y + W A - 1 + V B + E i
315 314 adantr φ i 1 M G B + E i = y 1 W H y + W A - 1 + V B + E i
316 282 fveq2d φ i 1 M H T + P i = H B + E i + W A - 1 + V
317 295 315 316 3eqtr4rd φ i 1 M H T + P i = G B + E i
318 317 sneqd φ i 1 M H T + P i = G B + E i
319 318 imaeq2d φ i 1 M H -1 H T + P i = H -1 G B + E i
320 217 283 319 3sstr4d φ i 1 M T + P i AP K P i H -1 H T + P i
321 320 ex φ i 1 M T + P i AP K P i H -1 H T + P i
322 252 adantr φ m 0 K 1 B
323 88 adantr φ m 0 K 1 W A - 1 + V
324 322 323 98 addassd φ m 0 K 1 B + W A - 1 + V + m W D = B + W A - 1 + V + m W D
325 127 oveq2d φ m 0 K 1 B + W A + m D - 1 + V = B + W A - 1 + V + m W D
326 324 325 eqtr4d φ m 0 K 1 B + W A - 1 + V + m W D = B + W A + m D - 1 + V
327 1 adantr φ m 0 K 1 V
328 2 adantr φ m 0 K 1 W
329 eluzfz1 M 1 1 1 M
330 52 329 syl φ 1 1 M
331 330 ne0d φ 1 M
332 elfzuz3 B + E i 1 W W B + E i
333 290 332 syl φ i 1 M W B + E i
334 12 nnzd φ B
335 uzid B B B
336 334 335 syl φ B B
337 336 adantr φ i 1 M B B
338 79 nnnn0d φ i 1 M E i 0
339 uzaddcl B B E i 0 B + E i B
340 337 338 339 syl2anc φ i 1 M B + E i B
341 uztrn W B + E i B + E i B W B
342 333 340 341 syl2anc φ i 1 M W B
343 eluzle W B B W
344 342 343 syl φ i 1 M B W
345 344 ralrimiva φ i 1 M B W
346 r19.2z 1 M i 1 M B W i 1 M B W
347 331 345 346 syl2anc φ i 1 M B W
348 idd i 1 M B W B W
349 348 rexlimiv i 1 M B W B W
350 347 349 syl φ B W
351 2 nnzd φ W
352 fznn W B 1 W B B W
353 351 352 syl φ B 1 W B B W
354 12 350 353 mpbir2and φ B 1 W
355 354 adantr φ m 0 K 1 B 1 W
356 327 328 151 355 vdwlem3 φ m 0 K 1 B + W A + m D - 1 + V 1 W 2 V
357 326 356 eqeltrd φ m 0 K 1 B + W A - 1 + V + m W D 1 W 2 V
358 fvoveq1 y = B H y + W A + m D - 1 + V = H B + W A + m D - 1 + V
359 fvex H B + W A + m D - 1 + V V
360 358 178 359 fvmpt B 1 W y 1 W H y + W A + m D - 1 + V B = H B + W A + m D - 1 + V
361 355 360 syl φ m 0 K 1 y 1 W H y + W A + m D - 1 + V B = H B + W A + m D - 1 + V
362 194 fveq1d φ m 0 K 1 G B = y 1 W H y + W A + m D - 1 + V B
363 326 fveq2d φ m 0 K 1 H B + W A - 1 + V + m W D = H B + W A + m D - 1 + V
364 361 362 363 3eqtr4rd φ m 0 K 1 H B + W A - 1 + V + m W D = G B
365 357 364 jca φ m 0 K 1 B + W A - 1 + V + m W D 1 W 2 V H B + W A - 1 + V + m W D = G B
366 eleq1 z = B + W A - 1 + V + m W D z 1 W 2 V B + W A - 1 + V + m W D 1 W 2 V
367 fveqeq2 z = B + W A - 1 + V + m W D H z = G B H B + W A - 1 + V + m W D = G B
368 366 367 anbi12d z = B + W A - 1 + V + m W D z 1 W 2 V H z = G B B + W A - 1 + V + m W D 1 W 2 V H B + W A - 1 + V + m W D = G B
369 365 368 syl5ibrcom φ m 0 K 1 z = B + W A - 1 + V + m W D z 1 W 2 V H z = G B
370 369 rexlimdva φ m 0 K 1 z = B + W A - 1 + V + m W D z 1 W 2 V H z = G B
371 12 87 nnaddcld φ B + W A - 1 + V
372 vdwapval K 0 B + W A - 1 + V W D z B + W A - 1 + V AP K W D m 0 K 1 z = B + W A - 1 + V + m W D
373 139 371 65 372 syl3anc φ z B + W A - 1 + V AP K W D m 0 K 1 z = B + W A - 1 + V + m W D
374 fniniseg H Fn 1 W 2 V z H -1 G B z 1 W 2 V H z = G B
375 212 374 syl φ z H -1 G B z 1 W 2 V H z = G B
376 370 373 375 3imtr4d φ z B + W A - 1 + V AP K W D z H -1 G B
377 376 ssrdv φ B + W A - 1 + V AP K W D H -1 G B
378 6 peano2nnd φ M + 1
379 378 51 eleqtrdi φ M + 1 1
380 eluzfz2 M + 1 1 M + 1 1 M + 1
381 iftrue j = M + 1 if j = M + 1 0 E j = 0
382 381 oveq1d j = M + 1 if j = M + 1 0 E j + W D = 0 + W D
383 ovex 0 + W D V
384 382 18 383 fvmpt M + 1 1 M + 1 P M + 1 = 0 + W D
385 379 380 384 3syl φ P M + 1 = 0 + W D
386 101 addid2d φ 0 + W D = W D
387 385 386 eqtrd φ P M + 1 = W D
388 387 oveq2d φ T + P M + 1 = T + W D
389 388 274 eqtrd φ T + P M + 1 = B + W A - 1 + V
390 389 387 oveq12d φ T + P M + 1 AP K P M + 1 = B + W A - 1 + V AP K W D
391 fvoveq1 y = B H y + W A - 1 + V = H B + W A - 1 + V
392 fvex H B + W A - 1 + V V
393 391 292 392 fvmpt B 1 W y 1 W H y + W A - 1 + V B = H B + W A - 1 + V
394 354 393 syl φ y 1 W H y + W A - 1 + V B = H B + W A - 1 + V
395 313 fveq1d φ G B = y 1 W H y + W A - 1 + V B
396 389 fveq2d φ H T + P M + 1 = H B + W A - 1 + V
397 394 395 396 3eqtr4rd φ H T + P M + 1 = G B
398 397 sneqd φ H T + P M + 1 = G B
399 398 imaeq2d φ H -1 H T + P M + 1 = H -1 G B
400 377 390 399 3sstr4d φ T + P M + 1 AP K P M + 1 H -1 H T + P M + 1
401 fveq2 i = M + 1 P i = P M + 1
402 401 oveq2d i = M + 1 T + P i = T + P M + 1
403 402 401 oveq12d i = M + 1 T + P i AP K P i = T + P M + 1 AP K P M + 1
404 402 fveq2d i = M + 1 H T + P i = H T + P M + 1
405 404 sneqd i = M + 1 H T + P i = H T + P M + 1
406 405 imaeq2d i = M + 1 H -1 H T + P i = H -1 H T + P M + 1
407 403 406 sseq12d i = M + 1 T + P i AP K P i H -1 H T + P i T + P M + 1 AP K P M + 1 H -1 H T + P M + 1
408 400 407 syl5ibrcom φ i = M + 1 T + P i AP K P i H -1 H T + P i
409 321 408 jaod φ i 1 M i = M + 1 T + P i AP K P i H -1 H T + P i
410 75 409 sylbid φ i 1 M + 1 T + P i AP K P i H -1 H T + P i
411 410 ralrimiv φ i 1 M + 1 T + P i AP K P i H -1 H T + P i
412 411 adantr φ ¬ G B ran J i 1 M + 1 T + P i AP K P i H -1 H T + P i
413 220 rexeqdv φ i 1 M + 1 x = H T + P i i 1 M M + 1 x = H T + P i
414 rexun i 1 M M + 1 x = H T + P i i 1 M x = H T + P i i M + 1 x = H T + P i
415 317 eqeq2d φ i 1 M x = H T + P i x = G B + E i
416 415 rexbidva φ i 1 M x = H T + P i i 1 M x = G B + E i
417 ovex M + 1 V
418 404 eqeq2d i = M + 1 x = H T + P i x = H T + P M + 1
419 417 418 rexsn i M + 1 x = H T + P i x = H T + P M + 1
420 397 eqeq2d φ x = H T + P M + 1 x = G B
421 419 420 syl5bb φ i M + 1 x = H T + P i x = G B
422 416 421 orbi12d φ i 1 M x = H T + P i i M + 1 x = H T + P i i 1 M x = G B + E i x = G B
423 414 422 syl5bb φ i 1 M M + 1 x = H T + P i i 1 M x = G B + E i x = G B
424 413 423 bitrd φ i 1 M + 1 x = H T + P i i 1 M x = G B + E i x = G B
425 424 adantr φ ¬ G B ran J i 1 M + 1 x = H T + P i i 1 M x = G B + E i x = G B
426 425 abbidv φ ¬ G B ran J x | i 1 M + 1 x = H T + P i = x | i 1 M x = G B + E i x = G B
427 eqid i 1 M + 1 H T + P i = i 1 M + 1 H T + P i
428 427 rnmpt ran i 1 M + 1 H T + P i = x | i 1 M + 1 x = H T + P i
429 15 rnmpt ran J = x | i 1 M x = G B + E i
430 df-sn G B = x | x = G B
431 429 430 uneq12i ran J G B = x | i 1 M x = G B + E i x | x = G B
432 unab x | i 1 M x = G B + E i x | x = G B = x | i 1 M x = G B + E i x = G B
433 431 432 eqtri ran J G B = x | i 1 M x = G B + E i x = G B
434 426 428 433 3eqtr4g φ ¬ G B ran J ran i 1 M + 1 H T + P i = ran J G B
435 434 fveq2d φ ¬ G B ran J ran i 1 M + 1 H T + P i = ran J G B
436 fzfi 1 M Fin
437 dffn4 J Fn 1 M J : 1 M onto ran J
438 20 437 mpbi J : 1 M onto ran J
439 fofi 1 M Fin J : 1 M onto ran J ran J Fin
440 436 438 439 mp2an ran J Fin
441 440 a1i φ ran J Fin
442 fvex G B V
443 hashunsng G B V ran J Fin ¬ G B ran J ran J G B = ran J + 1
444 442 443 ax-mp ran J Fin ¬ G B ran J ran J G B = ran J + 1
445 441 444 sylan φ ¬ G B ran J ran J G B = ran J + 1
446 16 adantr φ ¬ G B ran J ran J = M
447 446 oveq1d φ ¬ G B ran J ran J + 1 = M + 1
448 435 445 447 3eqtrd φ ¬ G B ran J ran i 1 M + 1 H T + P i = M + 1
449 412 448 jca φ ¬ G B ran J i 1 M + 1 T + P i AP K P i H -1 H T + P i ran i 1 M + 1 H T + P i = M + 1
450 oveq1 a = T a + d i = T + d i
451 450 oveq1d a = T a + d i AP K d i = T + d i AP K d i
452 fvoveq1 a = T H a + d i = H T + d i
453 452 sneqd a = T H a + d i = H T + d i
454 453 imaeq2d a = T H -1 H a + d i = H -1 H T + d i
455 451 454 sseq12d a = T a + d i AP K d i H -1 H a + d i T + d i AP K d i H -1 H T + d i
456 455 ralbidv a = T i 1 M + 1 a + d i AP K d i H -1 H a + d i i 1 M + 1 T + d i AP K d i H -1 H T + d i
457 452 mpteq2dv a = T i 1 M + 1 H a + d i = i 1 M + 1 H T + d i
458 457 rneqd a = T ran i 1 M + 1 H a + d i = ran i 1 M + 1 H T + d i
459 458 fveqeq2d a = T ran i 1 M + 1 H a + d i = M + 1 ran i 1 M + 1 H T + d i = M + 1
460 456 459 anbi12d a = T i 1 M + 1 a + d i AP K d i H -1 H a + d i ran i 1 M + 1 H a + d i = M + 1 i 1 M + 1 T + d i AP K d i H -1 H T + d i ran i 1 M + 1 H T + d i = M + 1
461 fveq1 d = P d i = P i
462 461 oveq2d d = P T + d i = T + P i
463 462 461 oveq12d d = P T + d i AP K d i = T + P i AP K P i
464 462 fveq2d d = P H T + d i = H T + P i
465 464 sneqd d = P H T + d i = H T + P i
466 465 imaeq2d d = P H -1 H T + d i = H -1 H T + P i
467 463 466 sseq12d d = P T + d i AP K d i H -1 H T + d i T + P i AP K P i H -1 H T + P i
468 467 ralbidv d = P i 1 M + 1 T + d i AP K d i H -1 H T + d i i 1 M + 1 T + P i AP K P i H -1 H T + P i
469 464 mpteq2dv d = P i 1 M + 1 H T + d i = i 1 M + 1 H T + P i
470 469 rneqd d = P ran i 1 M + 1 H T + d i = ran i 1 M + 1 H T + P i
471 470 fveqeq2d d = P ran i 1 M + 1 H T + d i = M + 1 ran i 1 M + 1 H T + P i = M + 1
472 468 471 anbi12d d = P i 1 M + 1 T + d i AP K d i H -1 H T + d i ran i 1 M + 1 H T + d i = M + 1 i 1 M + 1 T + P i AP K P i H -1 H T + P i ran i 1 M + 1 H T + P i = M + 1
473 460 472 rspc2ev T P 1 M + 1 i 1 M + 1 T + P i AP K P i H -1 H T + P i ran i 1 M + 1 H T + P i = M + 1 a d 1 M + 1 i 1 M + 1 a + d i AP K d i H -1 H a + d i ran i 1 M + 1 H a + d i = M + 1
474 48 73 449 473 syl3anc φ ¬ G B ran J a d 1 M + 1 i 1 M + 1 a + d i AP K d i H -1 H a + d i ran i 1 M + 1 H a + d i = M + 1
475 ovex 1 W 2 V V
476 25 adantr φ ¬ G B ran J K
477 476 nnnn0d φ ¬ G B ran J K 0
478 4 adantr φ ¬ G B ran J H : 1 W 2 V R
479 6 adantr φ ¬ G B ran J M
480 479 peano2nnd φ ¬ G B ran J M + 1
481 eqid 1 M + 1 = 1 M + 1
482 475 477 478 480 481 vdwpc φ ¬ G B ran J M + 1 K PolyAP H a d 1 M + 1 i 1 M + 1 a + d i AP K d i H -1 H a + d i ran i 1 M + 1 H a + d i = M + 1
483 474 482 mpbird φ ¬ G B ran J M + 1 K PolyAP H
484 483 orcd φ ¬ G B ran J M + 1 K PolyAP H K + 1 MonoAP G
485 46 484 pm2.61dan φ M + 1 K PolyAP H K + 1 MonoAP G