| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v | ⊢ ( 𝜑  →  𝑉  ∈  ℕ ) | 
						
							| 2 |  | vdwlem3.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 3 |  | vdwlem4.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 4 |  | vdwlem4.h | ⊢ ( 𝜑  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 5 |  | vdwlem4.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑉 )  ↦  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | vdwlem7.g | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 8 |  | vdwlem7.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | vdwlem7.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 10 |  | vdwlem7.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 11 |  | vdwlem7.s | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ⊆  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 12 |  | vdwlem6.b | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 13 |  | vdwlem6.e | ⊢ ( 𝜑  →  𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 14 |  | vdwlem6.s | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 15 |  | vdwlem6.j | ⊢ 𝐽  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 16 |  | vdwlem6.r | ⊢ ( 𝜑  →  ( ♯ ‘ ran  𝐽 )  =  𝑀 ) | 
						
							| 17 |  | vdwlem6.t | ⊢ 𝑇  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) ) | 
						
							| 18 |  | vdwlem6.p | ⊢ 𝑃  =  ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 19 |  | fvex | ⊢ ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∈  V | 
						
							| 20 | 19 15 | fnmpti | ⊢ 𝐽  Fn  ( 1 ... 𝑀 ) | 
						
							| 21 |  | fvelrnb | ⊢ ( 𝐽  Fn  ( 1 ... 𝑀 )  →  ( ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽  ↔  ∃ 𝑚  ∈  ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽  ↔  ∃ 𝑚  ∈  ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 24 |  | eluz2nn | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 2 )  →  𝐾  ∈  ℕ ) | 
						
							| 25 | 8 24 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝐾  ∈  ℕ ) | 
						
							| 27 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝑊  ∈  ℕ ) | 
						
							| 28 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 29 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝐵  ∈  ℕ ) | 
						
							| 30 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 31 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 32 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  𝑚  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 34 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑖  =  𝑚  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  =  ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝑖  =  𝑚  →  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 38 |  | fvex | ⊢ ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) )  ∈  V | 
						
							| 39 | 37 15 38 | fvmpt | ⊢ ( 𝑚  ∈  ( 1 ... 𝑀 )  →  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 40 | 33 39 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 41 | 34 40 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐺 ‘ 𝐵 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 42 | 23 26 27 28 29 30 31 32 33 41 | vdwlem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 ) ) )  →  ( 𝐾  +  1 )  MonoAP  𝐺 ) | 
						
							| 43 | 42 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐵 )  →  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) | 
						
							| 44 | 22 43 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽  →  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 𝐾  +  1 )  MonoAP  𝐺 ) | 
						
							| 46 | 45 | olcd | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | vdwlem5 | ⊢ ( 𝜑  →  𝑇  ∈  ℕ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝑇  ∈  ℕ ) | 
						
							| 49 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  𝑗  =  ( 𝑀  +  1 ) )  →  0  ∈  ℕ0 ) | 
						
							| 51 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 52 | 6 51 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 54 |  | elfzp1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↔  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∨  𝑗  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↔  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∨  𝑗  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 56 | 55 | biimpa | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∨  𝑗  =  ( 𝑀  +  1 ) ) ) | 
						
							| 57 | 56 | ord | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( ¬  𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  =  ( 𝑀  +  1 ) ) ) | 
						
							| 58 | 57 | con1d | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( ¬  𝑗  =  ( 𝑀  +  1 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ¬  𝑗  =  ( 𝑀  +  1 ) )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 60 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 61 | 60 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  ℕ ) | 
						
							| 62 | 61 | nnnn0d | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 63 | 59 62 | syldan | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ¬  𝑗  =  ( 𝑀  +  1 ) )  →  ( 𝐸 ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 64 | 50 63 | ifclda | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  ∈  ℕ0 ) | 
						
							| 65 | 2 10 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  𝐷 )  ∈  ℕ ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( 𝑊  ·  𝐷 )  ∈  ℕ ) | 
						
							| 67 |  | nn0nnaddcl | ⊢ ( ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  ∈  ℕ0  ∧  ( 𝑊  ·  𝐷 )  ∈  ℕ )  →  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) )  ∈  ℕ ) | 
						
							| 68 | 64 66 67 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  ∧  𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) )  ∈  ℕ ) | 
						
							| 69 | 68 18 | fmptd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝑃 : ( 1 ... ( 𝑀  +  1 ) ) ⟶ ℕ ) | 
						
							| 70 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 71 |  | ovex | ⊢ ( 1 ... ( 𝑀  +  1 ) )  ∈  V | 
						
							| 72 | 70 71 | elmap | ⊢ ( 𝑃  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) )  ↔  𝑃 : ( 1 ... ( 𝑀  +  1 ) ) ⟶ ℕ ) | 
						
							| 73 | 69 72 | sylibr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝑃  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 74 |  | elfzp1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↔  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∨  𝑖  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 75 | 52 74 | syl | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↔  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∨  𝑖  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 76 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐵  ∈  ℕ ) | 
						
							| 77 | 76 | nncnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 79 | 13 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 80 | 79 | nncnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 82 | 78 81 | addcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 83 |  | nnm1nn0 | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  −  1 )  ∈  ℕ0 ) | 
						
							| 84 | 9 83 | syl | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℕ0 ) | 
						
							| 85 |  | nn0nnaddcl | ⊢ ( ( ( 𝐴  −  1 )  ∈  ℕ0  ∧  𝑉  ∈  ℕ )  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 86 | 84 1 85 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 87 | 2 86 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 88 | 87 | nncnd | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℂ ) | 
						
							| 89 | 88 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℂ ) | 
						
							| 90 |  | elfznn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 92 | 91 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 93 | 92 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 94 | 93 81 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 95 | 65 | nnnn0d | ⊢ ( 𝜑  →  ( 𝑊  ·  𝐷 )  ∈  ℕ0 ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  𝐷 )  ∈  ℕ0 ) | 
						
							| 97 | 91 96 | nn0mulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 98 | 97 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) )  ∈  ℂ ) | 
						
							| 99 | 98 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) )  ∈  ℂ ) | 
						
							| 100 | 82 89 94 99 | add4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 101 | 65 | nncnd | ⊢ ( 𝜑  →  ( 𝑊  ·  𝐷 )  ∈  ℂ ) | 
						
							| 102 | 101 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  𝐷 )  ∈  ℂ ) | 
						
							| 103 | 93 81 102 | adddid | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 105 | 2 | nncnd | ⊢ ( 𝜑  →  𝑊  ∈  ℂ ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑊  ∈  ℂ ) | 
						
							| 107 | 86 | nncnd | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℂ ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐴  −  1 )  +  𝑉 )  ∈  ℂ ) | 
						
							| 109 | 10 | nncnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 110 | 109 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐷  ∈  ℂ ) | 
						
							| 111 | 92 110 | mulcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  𝐷 )  ∈  ℂ ) | 
						
							| 112 | 106 108 111 | adddid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( ( 𝐴  −  1 )  +  𝑉 )  +  ( 𝑚  ·  𝐷 ) ) )  =  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑊  ·  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 113 | 9 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 115 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  1  ∈  ℂ ) | 
						
							| 116 | 114 111 115 | addsubd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  =  ( ( 𝐴  −  1 )  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 )  =  ( ( ( 𝐴  −  1 )  +  ( 𝑚  ·  𝐷 ) )  +  𝑉 ) ) | 
						
							| 118 | 84 | nn0cnd | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 120 | 1 | nncnd | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑉  ∈  ℂ ) | 
						
							| 122 | 119 111 121 | add32d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐴  −  1 )  +  ( 𝑚  ·  𝐷 ) )  +  𝑉 )  =  ( ( ( 𝐴  −  1 )  +  𝑉 )  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 123 | 117 122 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 )  =  ( ( ( 𝐴  −  1 )  +  𝑉 )  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) )  =  ( 𝑊  ·  ( ( ( 𝐴  −  1 )  +  𝑉 )  +  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 125 | 92 106 110 | mul12d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) )  =  ( 𝑊  ·  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑊  ·  ( 𝑚  ·  𝐷 ) ) ) ) | 
						
							| 127 | 112 124 126 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) )  =  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) )  =  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) )  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 130 | 100 104 129 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 131 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑉  ∈  ℕ ) | 
						
							| 132 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑊  ∈  ℕ ) | 
						
							| 133 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ⊆  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 134 |  | eqid | ⊢ ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) | 
						
							| 135 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ·  𝐷 )  =  ( 𝑚  ·  𝐷 ) ) | 
						
							| 136 | 135 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴  +  ( 𝑛  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) ) | 
						
							| 137 | 136 | rspceeqv | ⊢ ( ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ∧  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑛  ·  𝐷 ) ) ) | 
						
							| 138 | 134 137 | mpan2 | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑛  ·  𝐷 ) ) ) | 
						
							| 139 | 25 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 140 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑛  ·  𝐷 ) ) ) ) | 
						
							| 141 | 139 9 10 140 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑛  ·  𝐷 ) ) ) ) | 
						
							| 142 | 141 | biimpar | ⊢ ( ( 𝜑  ∧  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  =  ( 𝐴  +  ( 𝑛  ·  𝐷 ) ) )  →  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 143 | 138 142 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 144 | 133 143 | sseldd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 145 | 1 2 3 4 5 | vdwlem4 | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 146 | 145 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( 1 ... 𝑉 ) ) | 
						
							| 147 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... 𝑉 )  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( ◡ 𝐹  “  { 𝐺 } )  ↔  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  𝐺 ) ) ) | 
						
							| 148 | 146 147 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( ◡ 𝐹  “  { 𝐺 } )  ↔  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  𝐺 ) ) ) | 
						
							| 149 | 148 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( ◡ 𝐹  “  { 𝐺 } ) )  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  𝐺 ) ) | 
						
							| 150 | 144 149 | syldan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  𝐺 ) ) | 
						
							| 151 | 150 | simpld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 152 | 151 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 153 | 14 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 155 |  | eqid | ⊢ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 156 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) )  =  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 157 | 156 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 158 | 157 | rspceeqv | ⊢ ( ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ∧  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 159 | 155 158 | mpan2 | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 160 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℕ ) | 
						
							| 161 | 160 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 162 | 76 79 | nnaddcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ℕ ) | 
						
							| 163 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ℕ  ∧  ( 𝐸 ‘ 𝑖 )  ∈  ℕ )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 164 | 161 162 79 163 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 165 | 164 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑛  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 166 | 159 165 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 167 | 154 166 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 168 | 7 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ( 1 ... 𝑊 ) ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐺  Fn  ( 1 ... 𝑊 ) ) | 
						
							| 170 |  | fniniseg | ⊢ ( 𝐺  Fn  ( 1 ... 𝑊 )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ↔  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 171 | 169 170 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ↔  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 172 | 171 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 173 | 167 172 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 174 | 173 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 175 | 131 132 152 174 | vdwlem3 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 176 | 130 175 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 177 |  | fvoveq1 | ⊢ ( 𝑦  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 178 |  | eqid | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 179 |  | fvex | ⊢ ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) )  ∈  V | 
						
							| 180 | 177 178 179 | fvmpt | ⊢ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  ∈  ( 1 ... 𝑊 )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 181 | 174 180 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 182 | 173 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 183 | 150 | simprd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  𝐺 ) | 
						
							| 184 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( 𝑥  −  1 )  =  ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 ) ) | 
						
							| 185 | 184 | oveq1d | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( ( 𝑥  −  1 )  +  𝑉 )  =  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) | 
						
							| 186 | 185 | oveq2d | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) )  =  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) | 
						
							| 187 | 186 | oveq2d | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) )  =  ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 188 | 187 | fveq2d | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 189 | 188 | mpteq2dv | ⊢ ( 𝑥  =  ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  →  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 190 |  | ovex | ⊢ ( 1 ... 𝑊 )  ∈  V | 
						
							| 191 | 190 | mptex | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) )  ∈  V | 
						
							| 192 | 189 5 191 | fvmpt | ⊢ ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  ∈  ( 1 ... 𝑉 )  →  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 193 | 151 192 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐹 ‘ ( 𝐴  +  ( 𝑚  ·  𝐷 ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 194 | 183 193 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐺  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 195 | 194 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐺  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 196 | 195 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 197 | 182 196 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 198 | 130 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) )  =  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐸 ‘ 𝑖 ) ) )  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 199 | 181 197 198 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 200 | 176 199 | jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 201 |  | eleq1 | ⊢ ( 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  →  ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ↔  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) ) | 
						
							| 202 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  →  ( ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ↔  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 203 | 201 202 | anbi12d | ⊢ ( 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  →  ( ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) )  ↔  ( ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 204 | 200 203 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  →  ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 205 | 204 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) )  →  ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 206 | 87 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 207 | 162 206 | nnaddcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℕ ) | 
						
							| 208 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑊  ·  𝐷 )  ∈  ℕ ) | 
						
							| 209 | 79 208 | nnaddcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) )  ∈  ℕ ) | 
						
							| 210 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℕ  ∧  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) )  ∈  ℕ )  →  ( 𝑥  ∈  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) ) ) | 
						
							| 211 | 161 207 209 210 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  ∈  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) ) ) | 
						
							| 212 | 4 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 213 | 212 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐻  Fn  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 214 |  | fniniseg | ⊢ ( 𝐻  Fn  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ↔  ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 215 | 213 214 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ↔  ( 𝑥  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 216 | 205 211 215 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  ∈  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  →  𝑥  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 217 | 216 | ssrdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 218 |  | ssun1 | ⊢ ( 1 ... 𝑀 )  ⊆  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) | 
						
							| 219 |  | fzsuc | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... ( 𝑀  +  1 ) )  =  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) ) | 
						
							| 220 | 52 219 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  +  1 ) )  =  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) ) | 
						
							| 221 | 218 220 | sseqtrrid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ⊆  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 222 | 221 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 223 |  | eqeq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  =  ( 𝑀  +  1 )  ↔  𝑖  =  ( 𝑀  +  1 ) ) ) | 
						
							| 224 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐸 ‘ 𝑗 )  =  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 225 | 223 224 | ifbieq2d | ⊢ ( 𝑗  =  𝑖  →  if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  =  if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 226 | 225 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 227 |  | ovex | ⊢ ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) )  ∈  V | 
						
							| 228 | 226 18 227 | fvmpt | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 229 | 222 228 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 230 | 6 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 231 | 230 | ltp1d | ⊢ ( 𝜑  →  𝑀  <  ( 𝑀  +  1 ) ) | 
						
							| 232 |  | peano2re | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 233 | 230 232 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 234 | 230 233 | ltnled | ⊢ ( 𝜑  →  ( 𝑀  <  ( 𝑀  +  1 )  ↔  ¬  ( 𝑀  +  1 )  ≤  𝑀 ) ) | 
						
							| 235 | 231 234 | mpbid | ⊢ ( 𝜑  →  ¬  ( 𝑀  +  1 )  ≤  𝑀 ) | 
						
							| 236 |  | breq1 | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑖  ≤  𝑀  ↔  ( 𝑀  +  1 )  ≤  𝑀 ) ) | 
						
							| 237 | 236 | notbid | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( ¬  𝑖  ≤  𝑀  ↔  ¬  ( 𝑀  +  1 )  ≤  𝑀 ) ) | 
						
							| 238 | 235 237 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑖  =  ( 𝑀  +  1 )  →  ¬  𝑖  ≤  𝑀 ) ) | 
						
							| 239 | 238 | con2d | ⊢ ( 𝜑  →  ( 𝑖  ≤  𝑀  →  ¬  𝑖  =  ( 𝑀  +  1 ) ) ) | 
						
							| 240 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 241 | 239 240 | impel | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ¬  𝑖  =  ( 𝑀  +  1 ) ) | 
						
							| 242 |  | iffalse | ⊢ ( ¬  𝑖  =  ( 𝑀  +  1 )  →  if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  =  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 243 | 242 | oveq1d | ⊢ ( ¬  𝑖  =  ( 𝑀  +  1 )  →  ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 244 | 241 243 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( if ( 𝑖  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 245 | 229 244 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑃 ‘ 𝑖 )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 246 | 245 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) )  =  ( 𝑇  +  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 247 | 47 | nncnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 248 | 247 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 249 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑊  ·  𝐷 )  ∈  ℂ ) | 
						
							| 250 | 248 80 249 | add12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑇  +  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑇  +  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 251 | 17 | oveq1i | ⊢ ( 𝑇  +  ( 𝑊  ·  𝐷 ) )  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  +  ( 𝑊  ·  𝐷 ) ) | 
						
							| 252 | 12 | nncnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 253 | 120 109 | subcld | ⊢ ( 𝜑  →  ( 𝑉  −  𝐷 )  ∈  ℂ ) | 
						
							| 254 | 113 253 | addcld | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝑉  −  𝐷 ) )  ∈  ℂ ) | 
						
							| 255 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 256 |  | subcl | ⊢ ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  ∈  ℂ ) | 
						
							| 257 | 254 255 256 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  ∈  ℂ ) | 
						
							| 258 | 105 257 | mulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  ∈  ℂ ) | 
						
							| 259 | 252 258 101 | addassd | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( 𝐵  +  ( ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  +  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 260 | 105 257 109 | adddid | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  +  𝐷 ) )  =  ( ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 261 | 113 253 109 | addassd | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  +  𝐷 )  =  ( 𝐴  +  ( ( 𝑉  −  𝐷 )  +  𝐷 ) ) ) | 
						
							| 262 | 120 109 | npcand | ⊢ ( 𝜑  →  ( ( 𝑉  −  𝐷 )  +  𝐷 )  =  𝑉 ) | 
						
							| 263 | 262 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  +  ( ( 𝑉  −  𝐷 )  +  𝐷 ) )  =  ( 𝐴  +  𝑉 ) ) | 
						
							| 264 | 261 263 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  +  𝐷 )  =  ( 𝐴  +  𝑉 ) ) | 
						
							| 265 | 264 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  +  𝐷 )  −  1 )  =  ( ( 𝐴  +  𝑉 )  −  1 ) ) | 
						
							| 266 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 267 | 254 109 266 | addsubd | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  +  𝐷 )  −  1 )  =  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  +  𝐷 ) ) | 
						
							| 268 | 113 120 266 | addsubd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑉 )  −  1 )  =  ( ( 𝐴  −  1 )  +  𝑉 ) ) | 
						
							| 269 | 265 267 268 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  +  𝐷 )  =  ( ( 𝐴  −  1 )  +  𝑉 ) ) | 
						
							| 270 | 269 | oveq2d | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  +  𝐷 ) )  =  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) | 
						
							| 271 | 260 270 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) | 
						
							| 272 | 271 | oveq2d | ⊢ ( 𝜑  →  ( 𝐵  +  ( ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  +  ( 𝑊  ·  𝐷 ) ) )  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 273 | 259 272 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 274 | 251 273 | eqtrid | ⊢ ( 𝜑  →  ( 𝑇  +  ( 𝑊  ·  𝐷 ) )  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 275 | 274 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑇  +  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 276 | 275 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑇  +  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 277 | 88 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℂ ) | 
						
							| 278 | 80 77 277 | addassd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐸 ‘ 𝑖 )  +  𝐵 )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  =  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 279 | 80 77 | addcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑖 )  +  𝐵 )  =  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 280 | 279 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐸 ‘ 𝑖 )  +  𝐵 )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 281 | 276 278 280 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑇  +  ( 𝑊  ·  𝐷 ) ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 282 | 246 250 281 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) )  =  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 283 | 282 245 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  =  ( ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 )  +  ( 𝑊  ·  𝐷 ) ) ) ) | 
						
							| 284 |  | cnvimass | ⊢ ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ⊆  dom  𝐺 | 
						
							| 285 | 284 7 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ⊆  ( 1 ... 𝑊 ) ) | 
						
							| 286 | 285 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } )  ⊆  ( 1 ... 𝑊 ) ) | 
						
							| 287 |  | vdwapid1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ℕ  ∧  ( 𝐸 ‘ 𝑖 )  ∈  ℕ )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 288 | 160 162 79 287 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 289 | 153 288 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 290 | 286 289 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 291 |  | fvoveq1 | ⊢ ( 𝑦  =  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 292 |  | eqid | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 293 |  | fvex | ⊢ ( 𝐻 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) )  ∈  V | 
						
							| 294 | 291 292 293 | fvmpt | ⊢ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 295 | 290 294 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 296 |  | vdwapid1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  𝐴  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 297 | 25 9 10 296 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 298 | 11 297 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 299 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... 𝑉 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { 𝐺 } )  ↔  ( 𝐴  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝐴 )  =  𝐺 ) ) ) | 
						
							| 300 | 146 299 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { 𝐺 } )  ↔  ( 𝐴  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝐴 )  =  𝐺 ) ) ) | 
						
							| 301 | 298 300 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝐴 )  =  𝐺 ) ) | 
						
							| 302 | 301 | simprd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  𝐺 ) | 
						
							| 303 | 301 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 304 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  −  1 )  =  ( 𝐴  −  1 ) ) | 
						
							| 305 | 304 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  −  1 )  +  𝑉 )  =  ( ( 𝐴  −  1 )  +  𝑉 ) ) | 
						
							| 306 | 305 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) )  =  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) | 
						
							| 307 | 306 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) )  =  ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 308 | 307 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 309 | 308 | mpteq2dv | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 310 | 190 | mptex | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) )  ∈  V | 
						
							| 311 | 309 5 310 | fvmpt | ⊢ ( 𝐴  ∈  ( 1 ... 𝑉 )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 312 | 303 311 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 313 | 302 312 | eqtr3d | ⊢ ( 𝜑  →  𝐺  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 314 | 313 | fveq1d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 315 | 314 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 316 | 282 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 317 | 295 315 316 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 318 | 317 | sneqd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) }  =  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) | 
						
							| 319 | 318 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐻  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 320 | 217 283 319 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 321 | 320 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 322 | 252 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 323 | 88 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  ∈  ℂ ) | 
						
							| 324 | 322 323 98 | addassd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  =  ( 𝐵  +  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 325 | 127 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) )  =  ( 𝐵  +  ( ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 326 | 324 325 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  =  ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 327 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑉  ∈  ℕ ) | 
						
							| 328 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑊  ∈  ℕ ) | 
						
							| 329 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 330 | 52 329 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 331 | 330 | ne0d | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ≠  ∅ ) | 
						
							| 332 |  | elfzuz3 | ⊢ ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 )  →  𝑊  ∈  ( ℤ≥ ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 333 | 290 332 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑊  ∈  ( ℤ≥ ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 334 | 12 | nnzd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 335 |  | uzid | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 336 | 334 335 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 337 | 336 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐵  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 338 | 79 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  ℕ0 ) | 
						
							| 339 |  | uzaddcl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 𝐵 )  ∧  ( 𝐸 ‘ 𝑖 )  ∈  ℕ0 )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 340 | 337 338 339 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 341 |  | uztrn | ⊢ ( ( 𝑊  ∈  ( ℤ≥ ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∧  ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) )  ∈  ( ℤ≥ ‘ 𝐵 ) )  →  𝑊  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 342 | 333 340 341 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑊  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 343 |  | eluzle | ⊢ ( 𝑊  ∈  ( ℤ≥ ‘ 𝐵 )  →  𝐵  ≤  𝑊 ) | 
						
							| 344 | 342 343 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐵  ≤  𝑊 ) | 
						
							| 345 | 344 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) 𝐵  ≤  𝑊 ) | 
						
							| 346 |  | r19.2z | ⊢ ( ( ( 1 ... 𝑀 )  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) 𝐵  ≤  𝑊 )  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝐵  ≤  𝑊 ) | 
						
							| 347 | 331 345 346 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝐵  ≤  𝑊 ) | 
						
							| 348 |  | idd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( 𝐵  ≤  𝑊  →  𝐵  ≤  𝑊 ) ) | 
						
							| 349 | 348 | rexlimiv | ⊢ ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝐵  ≤  𝑊  →  𝐵  ≤  𝑊 ) | 
						
							| 350 | 347 349 | syl | ⊢ ( 𝜑  →  𝐵  ≤  𝑊 ) | 
						
							| 351 | 2 | nnzd | ⊢ ( 𝜑  →  𝑊  ∈  ℤ ) | 
						
							| 352 |  | fznn | ⊢ ( 𝑊  ∈  ℤ  →  ( 𝐵  ∈  ( 1 ... 𝑊 )  ↔  ( 𝐵  ∈  ℕ  ∧  𝐵  ≤  𝑊 ) ) ) | 
						
							| 353 | 351 352 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 1 ... 𝑊 )  ↔  ( 𝐵  ∈  ℕ  ∧  𝐵  ≤  𝑊 ) ) ) | 
						
							| 354 | 12 350 353 | mpbir2and | ⊢ ( 𝜑  →  𝐵  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 355 | 354 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐵  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 356 | 327 328 151 355 | vdwlem3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 357 | 326 356 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 358 |  | fvoveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 359 |  | fvex | ⊢ ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) )  ∈  V | 
						
							| 360 | 358 178 359 | fvmpt | ⊢ ( 𝐵  ∈  ( 1 ... 𝑊 )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 361 | 355 360 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 362 | 194 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ 𝐵 )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 ) ) | 
						
							| 363 | 326 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( ( 𝐴  +  ( 𝑚  ·  𝐷 ) )  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 364 | 361 362 363 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 365 | 357 364 | jca | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 366 |  | eleq1 | ⊢ ( 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  →  ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ↔  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) ) | 
						
							| 367 |  | fveqeq2 | ⊢ ( 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  →  ( ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 )  ↔  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 368 | 366 367 | anbi12d | ⊢ ( 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  →  ( ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) )  ↔  ( ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) )  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 369 | 365 368 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  →  ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 370 | 369 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) )  →  ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 371 | 12 87 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℕ ) | 
						
							| 372 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  ∈  ℕ  ∧  ( 𝑊  ·  𝐷 )  ∈  ℕ )  →  ( 𝑧  ∈  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊  ·  𝐷 ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 373 | 139 371 65 372 | syl3anc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊  ·  𝐷 ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑧  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) )  +  ( 𝑚  ·  ( 𝑊  ·  𝐷 ) ) ) ) ) | 
						
							| 374 |  | fniniseg | ⊢ ( 𝐻  Fn  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  →  ( 𝑧  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ 𝐵 ) } )  ↔  ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 375 | 212 374 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ 𝐵 ) } )  ↔  ( 𝑧  ∈  ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∧  ( 𝐻 ‘ 𝑧 )  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 376 | 370 373 375 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊  ·  𝐷 ) )  →  𝑧  ∈  ( ◡ 𝐻  “  { ( 𝐺 ‘ 𝐵 ) } ) ) ) | 
						
							| 377 | 376 | ssrdv | ⊢ ( 𝜑  →  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊  ·  𝐷 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐺 ‘ 𝐵 ) } ) ) | 
						
							| 378 | 6 | peano2nnd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 379 | 378 51 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 380 |  | eluzfz2 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀  +  1 )  ∈  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 381 |  | iftrue | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  =  0 ) | 
						
							| 382 | 381 | oveq1d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) )  =  ( 0  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 383 |  | ovex | ⊢ ( 0  +  ( 𝑊  ·  𝐷 ) )  ∈  V | 
						
							| 384 | 382 18 383 | fvmpt | ⊢ ( ( 𝑀  +  1 )  ∈  ( 1 ... ( 𝑀  +  1 ) )  →  ( 𝑃 ‘ ( 𝑀  +  1 ) )  =  ( 0  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 385 | 379 380 384 | 3syl | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑀  +  1 ) )  =  ( 0  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 386 | 101 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝑊  ·  𝐷 ) )  =  ( 𝑊  ·  𝐷 ) ) | 
						
							| 387 | 385 386 | eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ ( 𝑀  +  1 ) )  =  ( 𝑊  ·  𝐷 ) ) | 
						
							| 388 | 387 | oveq2d | ⊢ ( 𝜑  →  ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) )  =  ( 𝑇  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 389 | 388 274 | eqtrd | ⊢ ( 𝜑  →  ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) )  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 390 | 389 387 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀  +  1 ) ) )  =  ( ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 391 |  | fvoveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 392 |  | fvex | ⊢ ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) )  ∈  V | 
						
							| 393 | 391 292 392 | fvmpt | ⊢ ( 𝐵  ∈  ( 1 ... 𝑊 )  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 394 | 354 393 | syl | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 395 | 313 | fveq1d | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐵 )  =  ( ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) ‘ 𝐵 ) ) | 
						
							| 396 | 389 | fveq2d | ⊢ ( 𝜑  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) )  =  ( 𝐻 ‘ ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 397 | 394 395 396 | 3eqtr4rd | ⊢ ( 𝜑  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 398 | 397 | sneqd | ⊢ ( 𝜑  →  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) }  =  { ( 𝐺 ‘ 𝐵 ) } ) | 
						
							| 399 | 398 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) } )  =  ( ◡ 𝐻  “  { ( 𝐺 ‘ 𝐵 ) } ) ) | 
						
							| 400 | 377 390 399 | 3sstr4d | ⊢ ( 𝜑  →  ( ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀  +  1 ) ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) } ) ) | 
						
							| 401 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 402 | 401 | oveq2d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) )  =  ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 403 | 402 401 | oveq12d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  =  ( ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 404 | 402 | fveq2d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 405 | 404 | sneqd | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) }  =  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) } ) | 
						
							| 406 | 405 | imaeq2d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) } ) ) | 
						
							| 407 | 403 406 | sseq12d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀  +  1 ) ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) } ) ) ) | 
						
							| 408 | 400 407 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑖  =  ( 𝑀  +  1 )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 409 | 321 408 | jaod | ⊢ ( 𝜑  →  ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ∨  𝑖  =  ( 𝑀  +  1 ) )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 410 | 75 409 | sylbid | ⊢ ( 𝜑  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  →  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 411 | 410 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 412 | 411 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 413 | 220 | rexeqdv | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ∃ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 414 |  | rexun | ⊢ ( ∃ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ∨  ∃ 𝑖  ∈  { ( 𝑀  +  1 ) } 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 415 | 317 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 416 | 415 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) ) | 
						
							| 417 |  | ovex | ⊢ ( 𝑀  +  1 )  ∈  V | 
						
							| 418 | 404 | eqeq2d | ⊢ ( 𝑖  =  ( 𝑀  +  1 )  →  ( 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 419 | 417 418 | rexsn | ⊢ ( ∃ 𝑖  ∈  { ( 𝑀  +  1 ) } 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 420 | 397 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ ( 𝑀  +  1 ) ) ) )  ↔  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 421 | 419 420 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  { ( 𝑀  +  1 ) } 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 422 | 416 421 | orbi12d | ⊢ ( 𝜑  →  ( ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ∨  ∃ 𝑖  ∈  { ( 𝑀  +  1 ) } 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) )  ↔  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 423 | 414 422 | bitrid | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∪  { ( 𝑀  +  1 ) } ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 424 | 413 423 | bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 425 | 424 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) ) ) | 
						
							| 426 | 425 | abbidv | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  { 𝑥  ∣  ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) }  =  { 𝑥  ∣  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) } ) | 
						
							| 427 |  | eqid | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 428 | 427 | rnmpt | ⊢ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) )  =  { 𝑥  ∣  ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) 𝑥  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } | 
						
							| 429 | 15 | rnmpt | ⊢ ran  𝐽  =  { 𝑥  ∣  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } | 
						
							| 430 |  | df-sn | ⊢ { ( 𝐺 ‘ 𝐵 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐺 ‘ 𝐵 ) } | 
						
							| 431 | 429 430 | uneq12i | ⊢ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } )  =  ( { 𝑥  ∣  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐺 ‘ 𝐵 ) } ) | 
						
							| 432 |  | unab | ⊢ ( { 𝑥  ∣  ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) }  ∪  { 𝑥  ∣  𝑥  =  ( 𝐺 ‘ 𝐵 ) } )  =  { 𝑥  ∣  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) } | 
						
							| 433 | 431 432 | eqtri | ⊢ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } )  =  { 𝑥  ∣  ( ∃ 𝑖  ∈  ( 1 ... 𝑀 ) 𝑥  =  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) )  ∨  𝑥  =  ( 𝐺 ‘ 𝐵 ) ) } | 
						
							| 434 | 426 428 433 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) )  =  ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } ) ) | 
						
							| 435 | 434 | fveq2d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( ♯ ‘ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } ) ) ) | 
						
							| 436 |  | fzfi | ⊢ ( 1 ... 𝑀 )  ∈  Fin | 
						
							| 437 |  | dffn4 | ⊢ ( 𝐽  Fn  ( 1 ... 𝑀 )  ↔  𝐽 : ( 1 ... 𝑀 ) –onto→ ran  𝐽 ) | 
						
							| 438 | 20 437 | mpbi | ⊢ 𝐽 : ( 1 ... 𝑀 ) –onto→ ran  𝐽 | 
						
							| 439 |  | fofi | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  𝐽 : ( 1 ... 𝑀 ) –onto→ ran  𝐽 )  →  ran  𝐽  ∈  Fin ) | 
						
							| 440 | 436 438 439 | mp2an | ⊢ ran  𝐽  ∈  Fin | 
						
							| 441 | 440 | a1i | ⊢ ( 𝜑  →  ran  𝐽  ∈  Fin ) | 
						
							| 442 |  | fvex | ⊢ ( 𝐺 ‘ 𝐵 )  ∈  V | 
						
							| 443 |  | hashunsng | ⊢ ( ( 𝐺 ‘ 𝐵 )  ∈  V  →  ( ( ran  𝐽  ∈  Fin  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } ) )  =  ( ( ♯ ‘ ran  𝐽 )  +  1 ) ) ) | 
						
							| 444 | 442 443 | ax-mp | ⊢ ( ( ran  𝐽  ∈  Fin  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } ) )  =  ( ( ♯ ‘ ran  𝐽 )  +  1 ) ) | 
						
							| 445 | 441 444 | sylan | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ( ran  𝐽  ∪  { ( 𝐺 ‘ 𝐵 ) } ) )  =  ( ( ♯ ‘ ran  𝐽 )  +  1 ) ) | 
						
							| 446 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ran  𝐽 )  =  𝑀 ) | 
						
							| 447 | 446 | oveq1d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ( ♯ ‘ ran  𝐽 )  +  1 )  =  ( 𝑀  +  1 ) ) | 
						
							| 448 | 435 445 447 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 449 | 412 448 | jca | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) | 
						
							| 450 |  | oveq1 | ⊢ ( 𝑎  =  𝑇  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  =  ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 451 | 450 | oveq1d | ⊢ ( 𝑎  =  𝑇  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  =  ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 452 |  | fvoveq1 | ⊢ ( 𝑎  =  𝑇  →  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) | 
						
							| 453 | 452 | sneqd | ⊢ ( 𝑎  =  𝑇  →  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) }  =  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) | 
						
							| 454 | 453 | imaeq2d | ⊢ ( 𝑎  =  𝑇  →  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 455 | 451 454 | sseq12d | ⊢ ( 𝑎  =  𝑇  →  ( ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 456 | 455 | ralbidv | ⊢ ( 𝑎  =  𝑇  →  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 457 | 452 | mpteq2dv | ⊢ ( 𝑎  =  𝑇  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) ) | 
						
							| 458 | 457 | rneqd | ⊢ ( 𝑎  =  𝑇  →  ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) ) | 
						
							| 459 | 458 | fveqeq2d | ⊢ ( 𝑎  =  𝑇  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 )  ↔  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) | 
						
							| 460 | 456 459 | anbi12d | ⊢ ( 𝑎  =  𝑇  →  ( ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 461 |  | fveq1 | ⊢ ( 𝑑  =  𝑃  →  ( 𝑑 ‘ 𝑖 )  =  ( 𝑃 ‘ 𝑖 ) ) | 
						
							| 462 | 461 | oveq2d | ⊢ ( 𝑑  =  𝑃  →  ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) )  =  ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 463 | 462 461 | oveq12d | ⊢ ( 𝑑  =  𝑃  →  ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  =  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ) | 
						
							| 464 | 462 | fveq2d | ⊢ ( 𝑑  =  𝑃  →  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) )  =  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) | 
						
							| 465 | 464 | sneqd | ⊢ ( 𝑑  =  𝑃  →  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) }  =  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) | 
						
							| 466 | 465 | imaeq2d | ⊢ ( 𝑑  =  𝑃  →  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 467 | 463 466 | sseq12d | ⊢ ( 𝑑  =  𝑃  →  ( ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 468 | 467 | ralbidv | ⊢ ( 𝑑  =  𝑃  →  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) | 
						
							| 469 | 464 | mpteq2dv | ⊢ ( 𝑑  =  𝑃  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 470 | 469 | rneqd | ⊢ ( 𝑑  =  𝑃  →  ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) ) | 
						
							| 471 | 470 | fveqeq2d | ⊢ ( 𝑑  =  𝑃  →  ( ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 )  ↔  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) | 
						
							| 472 | 468 471 | anbi12d | ⊢ ( 𝑑  =  𝑃  →  ( ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) )  ↔  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 473 | 460 472 | rspc2ev | ⊢ ( ( 𝑇  ∈  ℕ  ∧  𝑃  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑇  +  ( 𝑃 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) ) ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) | 
						
							| 474 | 48 73 449 473 | syl3anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) ) ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) | 
						
							| 475 |  | ovex | ⊢ ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) )  ∈  V | 
						
							| 476 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝐾  ∈  ℕ ) | 
						
							| 477 | 476 | nnnn0d | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 478 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 479 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  𝑀  ∈  ℕ ) | 
						
							| 480 | 479 | peano2nnd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 𝑀  +  1 )  ∈  ℕ ) | 
						
							| 481 |  | eqid | ⊢ ( 1 ... ( 𝑀  +  1 ) )  =  ( 1 ... ( 𝑀  +  1 ) ) | 
						
							| 482 | 475 477 478 480 481 | vdwpc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... ( 𝑀  +  1 ) ) ) ( ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐻  “  { ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( 𝐻 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  ( 𝑀  +  1 ) ) ) ) | 
						
							| 483 | 474 482 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻 ) | 
						
							| 484 | 483 | orcd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝐺 ‘ 𝐵 )  ∈  ran  𝐽 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) | 
						
							| 485 | 46 484 | pm2.61dan | ⊢ ( 𝜑  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) |