| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
| 2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
| 3 |
|
vdwlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 4 |
|
vdwlem4.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
| 5 |
|
vdwlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ) |
| 6 |
|
vdwlem7.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
vdwlem7.g |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
| 8 |
|
vdwlem7.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
| 9 |
|
vdwlem7.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 10 |
|
vdwlem7.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 11 |
|
vdwlem7.s |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐺 } ) ) |
| 12 |
|
vdwlem6.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 13 |
|
vdwlem6.e |
⊢ ( 𝜑 → 𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 14 |
|
vdwlem6.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 15 |
|
vdwlem6.j |
⊢ 𝐽 = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 16 |
|
vdwlem6.r |
⊢ ( 𝜑 → ( ♯ ‘ ran 𝐽 ) = 𝑀 ) |
| 17 |
|
vdwlem6.t |
⊢ 𝑇 = ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) |
| 18 |
|
vdwlem6.p |
⊢ 𝑃 = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ) |
| 19 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∈ V |
| 20 |
19 15
|
fnmpti |
⊢ 𝐽 Fn ( 1 ... 𝑀 ) |
| 21 |
|
fvelrnb |
⊢ ( 𝐽 Fn ( 1 ... 𝑀 ) → ( ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ↔ ∃ 𝑚 ∈ ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ↔ ∃ 𝑚 ∈ ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝑅 ∈ Fin ) |
| 24 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
| 25 |
8 24
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝐾 ∈ ℕ ) |
| 27 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝑊 ∈ ℕ ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
| 29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝐵 ∈ ℕ ) |
| 30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝑀 ∈ ℕ ) |
| 31 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 32 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → 𝑚 ∈ ( 1 ... 𝑀 ) ) |
| 34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑚 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) = ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝑖 = 𝑚 → ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 38 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) ∈ V |
| 39 |
37 15 38
|
fvmpt |
⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 40 |
33 39
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 41 |
34 40
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 42 |
23 26 27 28 29 30 31 32 33 41
|
vdwlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) ) ) → ( 𝐾 + 1 ) MonoAP 𝐺 ) |
| 43 |
42
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 1 ... 𝑀 ) ( 𝐽 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐵 ) → ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |
| 44 |
22 43
|
biimtrid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 → ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |
| 45 |
44
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 𝐾 + 1 ) MonoAP 𝐺 ) |
| 46 |
45
|
olcd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
vdwlem5 |
⊢ ( 𝜑 → 𝑇 ∈ ℕ ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝑇 ∈ ℕ ) |
| 49 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 50 |
49
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ 𝑗 = ( 𝑀 + 1 ) ) → 0 ∈ ℕ0 ) |
| 51 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 52 |
6 51
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 54 |
|
elfzp1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∨ 𝑗 = ( 𝑀 + 1 ) ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑗 ∈ ( 1 ... 𝑀 ) ∨ 𝑗 = ( 𝑀 + 1 ) ) ) ) |
| 56 |
55
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 𝑗 ∈ ( 1 ... 𝑀 ) ∨ 𝑗 = ( 𝑀 + 1 ) ) ) |
| 57 |
56
|
ord |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ¬ 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 = ( 𝑀 + 1 ) ) ) |
| 58 |
57
|
con1d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ¬ 𝑗 = ( 𝑀 + 1 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ¬ 𝑗 = ( 𝑀 + 1 ) ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
| 60 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → 𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 61 |
60
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ ℕ ) |
| 62 |
61
|
nnnn0d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ ℕ0 ) |
| 63 |
59 62
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ¬ 𝑗 = ( 𝑀 + 1 ) ) → ( 𝐸 ‘ 𝑗 ) ∈ ℕ0 ) |
| 64 |
50 63
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) ∈ ℕ0 ) |
| 65 |
2 10
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · 𝐷 ) ∈ ℕ ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 𝑊 · 𝐷 ) ∈ ℕ ) |
| 67 |
|
nn0nnaddcl |
⊢ ( ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) ∈ ℕ0 ∧ ( 𝑊 · 𝐷 ) ∈ ℕ ) → ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ∈ ℕ ) |
| 68 |
64 66 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ∈ ℕ ) |
| 69 |
68 18
|
fmptd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝑃 : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ℕ ) |
| 70 |
|
nnex |
⊢ ℕ ∈ V |
| 71 |
|
ovex |
⊢ ( 1 ... ( 𝑀 + 1 ) ) ∈ V |
| 72 |
70 71
|
elmap |
⊢ ( 𝑃 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ↔ 𝑃 : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ℕ ) |
| 73 |
69 72
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝑃 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 74 |
|
elfzp1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∨ 𝑖 = ( 𝑀 + 1 ) ) ) ) |
| 75 |
52 74
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∨ 𝑖 = ( 𝑀 + 1 ) ) ) ) |
| 76 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐵 ∈ ℕ ) |
| 77 |
76
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 79 |
13
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ℕ ) |
| 80 |
79
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ℂ ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ℂ ) |
| 82 |
78 81
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ℂ ) |
| 83 |
|
nnm1nn0 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 84 |
9 83
|
syl |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 85 |
|
nn0nnaddcl |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℕ0 ∧ 𝑉 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
| 86 |
84 1 85
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℕ ) |
| 87 |
2 86
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) |
| 88 |
87
|
nncnd |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℂ ) |
| 89 |
88
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℂ ) |
| 90 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 91 |
90
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 92 |
91
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℂ ) |
| 93 |
92
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℂ ) |
| 94 |
93 81
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ∈ ℂ ) |
| 95 |
65
|
nnnn0d |
⊢ ( 𝜑 → ( 𝑊 · 𝐷 ) ∈ ℕ0 ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · 𝐷 ) ∈ ℕ0 ) |
| 97 |
91 96
|
nn0mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( 𝑊 · 𝐷 ) ) ∈ ℕ0 ) |
| 98 |
97
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( 𝑊 · 𝐷 ) ) ∈ ℂ ) |
| 99 |
98
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( 𝑊 · 𝐷 ) ) ∈ ℂ ) |
| 100 |
82 89 94 99
|
add4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 101 |
65
|
nncnd |
⊢ ( 𝜑 → ( 𝑊 · 𝐷 ) ∈ ℂ ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · 𝐷 ) ∈ ℂ ) |
| 103 |
93 81 102
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) = ( ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) |
| 104 |
103
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 105 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑊 ∈ ℂ ) |
| 107 |
86
|
nncnd |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℂ ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 − 1 ) + 𝑉 ) ∈ ℂ ) |
| 109 |
10
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐷 ∈ ℂ ) |
| 111 |
92 110
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝐷 ) ∈ ℂ ) |
| 112 |
106 108 111
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( ( 𝐴 − 1 ) + 𝑉 ) + ( 𝑚 · 𝐷 ) ) ) = ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑊 · ( 𝑚 · 𝐷 ) ) ) ) |
| 113 |
9
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 115 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 1 ∈ ℂ ) |
| 116 |
114 111 115
|
addsubd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) = ( ( 𝐴 − 1 ) + ( 𝑚 · 𝐷 ) ) ) |
| 117 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) = ( ( ( 𝐴 − 1 ) + ( 𝑚 · 𝐷 ) ) + 𝑉 ) ) |
| 118 |
84
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 − 1 ) ∈ ℂ ) |
| 120 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑉 ∈ ℂ ) |
| 122 |
119 111 121
|
add32d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐴 − 1 ) + ( 𝑚 · 𝐷 ) ) + 𝑉 ) = ( ( ( 𝐴 − 1 ) + 𝑉 ) + ( 𝑚 · 𝐷 ) ) ) |
| 123 |
117 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) = ( ( ( 𝐴 − 1 ) + 𝑉 ) + ( 𝑚 · 𝐷 ) ) ) |
| 124 |
123
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) = ( 𝑊 · ( ( ( 𝐴 − 1 ) + 𝑉 ) + ( 𝑚 · 𝐷 ) ) ) ) |
| 125 |
92 106 110
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · ( 𝑊 · 𝐷 ) ) = ( 𝑊 · ( 𝑚 · 𝐷 ) ) ) |
| 126 |
125
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) = ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑊 · ( 𝑚 · 𝐷 ) ) ) ) |
| 127 |
112 124 126
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) = ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) |
| 128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) = ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) |
| 129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 130 |
100 104 129
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) |
| 131 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑉 ∈ ℕ ) |
| 132 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑊 ∈ ℕ ) |
| 133 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐺 } ) ) |
| 134 |
|
eqid |
⊢ ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) |
| 135 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝐷 ) = ( 𝑚 · 𝐷 ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 + ( 𝑛 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
| 137 |
136
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) |
| 138 |
134 137
|
mpan2 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) |
| 139 |
25
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 140 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) ) |
| 141 |
139 9 10 140
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) ) |
| 142 |
141
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
| 143 |
138 142
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
| 144 |
133 143
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐹 “ { 𝐺 } ) ) |
| 145 |
1 2 3 4 5
|
vdwlem4 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
| 146 |
145
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 1 ... 𝑉 ) ) |
| 147 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑉 ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐹 “ { 𝐺 } ) ↔ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐺 ) ) ) |
| 148 |
146 147
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐹 “ { 𝐺 } ) ↔ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐺 ) ) ) |
| 149 |
148
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐹 “ { 𝐺 } ) ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐺 ) ) |
| 150 |
144 149
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐺 ) ) |
| 151 |
150
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ) |
| 152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) ) |
| 153 |
14
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 154 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 155 |
|
eqid |
⊢ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) |
| 156 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) = ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) |
| 157 |
156
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 158 |
157
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 159 |
155 158
|
mpan2 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 160 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ ) |
| 161 |
160
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ0 ) |
| 162 |
76 79
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ℕ ) |
| 163 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ℕ ∧ ( 𝐸 ‘ 𝑖 ) ∈ ℕ ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 164 |
161 162 79 163
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 165 |
164
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑛 · ( 𝐸 ‘ 𝑖 ) ) ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 166 |
159 165
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 167 |
154 166
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 168 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ( 1 ... 𝑊 ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐺 Fn ( 1 ... 𝑊 ) ) |
| 170 |
|
fniniseg |
⊢ ( 𝐺 Fn ( 1 ... 𝑊 ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ↔ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 171 |
169 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ↔ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 172 |
171
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 173 |
167 172
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 174 |
173
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) ) |
| 175 |
131 132 152 174
|
vdwlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 176 |
130 175
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 177 |
|
fvoveq1 |
⊢ ( 𝑦 = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 178 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 179 |
|
fvex |
⊢ ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ∈ V |
| 180 |
177 178 179
|
fvmpt |
⊢ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ∈ ( 1 ... 𝑊 ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 181 |
174 180
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 182 |
173
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 183 |
150
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐺 ) |
| 184 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝑥 − 1 ) = ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) ) |
| 185 |
184
|
oveq1d |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( ( 𝑥 − 1 ) + 𝑉 ) = ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) |
| 186 |
185
|
oveq2d |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) = ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) |
| 187 |
186
|
oveq2d |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) = ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) |
| 188 |
187
|
fveq2d |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 189 |
188
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ) |
| 190 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
| 191 |
190
|
mptex |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ∈ V |
| 192 |
189 5 191
|
fvmpt |
⊢ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑉 ) → ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ) |
| 193 |
151 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ) |
| 194 |
183 193
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐺 = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ) |
| 195 |
194
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐺 = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ) |
| 196 |
195
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 197 |
182 196
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 198 |
130
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) = ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐸 ‘ 𝑖 ) ) ) + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 199 |
181 197 198
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 200 |
176 199
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 201 |
|
eleq1 |
⊢ ( 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) → ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) ) |
| 202 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) → ( ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ↔ ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 203 |
201 202
|
anbi12d |
⊢ ( 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) → ( ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ↔ ( ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 204 |
200 203
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) → ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 205 |
204
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) → ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 206 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℕ ) |
| 207 |
162 206
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ) |
| 208 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 · 𝐷 ) ∈ ℕ ) |
| 209 |
79 208
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ∈ ℕ ) |
| 210 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ∧ ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ∈ ℕ ) → ( 𝑥 ∈ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) ) |
| 211 |
161 207 209 210
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑥 ∈ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) ) ) |
| 212 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 213 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐻 Fn ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 214 |
|
fniniseg |
⊢ ( 𝐻 Fn ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 215 |
213 214
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑥 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
| 216 |
205 211 215
|
3imtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑥 ∈ ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) → 𝑥 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) ) |
| 217 |
216
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 218 |
|
ssun1 |
⊢ ( 1 ... 𝑀 ) ⊆ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) |
| 219 |
|
fzsuc |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
| 220 |
52 219
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
| 221 |
218 220
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 222 |
221
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 223 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 = ( 𝑀 + 1 ) ↔ 𝑖 = ( 𝑀 + 1 ) ) ) |
| 224 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐸 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 225 |
223 224
|
ifbieq2d |
⊢ ( 𝑗 = 𝑖 → if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) = if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) ) |
| 226 |
225
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) = ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) ) |
| 227 |
|
ovex |
⊢ ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) ∈ V |
| 228 |
226 18 227
|
fvmpt |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) → ( 𝑃 ‘ 𝑖 ) = ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) ) |
| 229 |
222 228
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) = ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) ) |
| 230 |
6
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 231 |
230
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 232 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 233 |
230 232
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
| 234 |
230 233
|
ltnled |
⊢ ( 𝜑 → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 235 |
231 234
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 236 |
|
breq1 |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝑖 ≤ 𝑀 ↔ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 237 |
236
|
notbid |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( ¬ 𝑖 ≤ 𝑀 ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 238 |
235 237
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑖 = ( 𝑀 + 1 ) → ¬ 𝑖 ≤ 𝑀 ) ) |
| 239 |
238
|
con2d |
⊢ ( 𝜑 → ( 𝑖 ≤ 𝑀 → ¬ 𝑖 = ( 𝑀 + 1 ) ) ) |
| 240 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
| 241 |
239 240
|
impel |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ¬ 𝑖 = ( 𝑀 + 1 ) ) |
| 242 |
|
iffalse |
⊢ ( ¬ 𝑖 = ( 𝑀 + 1 ) → if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) = ( 𝐸 ‘ 𝑖 ) ) |
| 243 |
242
|
oveq1d |
⊢ ( ¬ 𝑖 = ( 𝑀 + 1 ) → ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) |
| 244 |
241 243
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( if ( 𝑖 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · 𝐷 ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) |
| 245 |
229 244
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) |
| 246 |
245
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) = ( 𝑇 + ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) |
| 247 |
47
|
nncnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 248 |
247
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑇 ∈ ℂ ) |
| 249 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 · 𝐷 ) ∈ ℂ ) |
| 250 |
248 80 249
|
add12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 + ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝑇 + ( 𝑊 · 𝐷 ) ) ) ) |
| 251 |
17
|
oveq1i |
⊢ ( 𝑇 + ( 𝑊 · 𝐷 ) ) = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) + ( 𝑊 · 𝐷 ) ) |
| 252 |
12
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 253 |
120 109
|
subcld |
⊢ ( 𝜑 → ( 𝑉 − 𝐷 ) ∈ ℂ ) |
| 254 |
113 253
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑉 − 𝐷 ) ) ∈ ℂ ) |
| 255 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 256 |
|
subcl |
⊢ ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ∈ ℂ ) |
| 257 |
254 255 256
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ∈ ℂ ) |
| 258 |
105 257
|
mulcld |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ∈ ℂ ) |
| 259 |
252 258 101
|
addassd |
⊢ ( 𝜑 → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) + ( 𝑊 · 𝐷 ) ) = ( 𝐵 + ( ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) + ( 𝑊 · 𝐷 ) ) ) ) |
| 260 |
105 257 109
|
adddid |
⊢ ( 𝜑 → ( 𝑊 · ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) + 𝐷 ) ) = ( ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) + ( 𝑊 · 𝐷 ) ) ) |
| 261 |
113 253 109
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) + 𝐷 ) = ( 𝐴 + ( ( 𝑉 − 𝐷 ) + 𝐷 ) ) ) |
| 262 |
120 109
|
npcand |
⊢ ( 𝜑 → ( ( 𝑉 − 𝐷 ) + 𝐷 ) = 𝑉 ) |
| 263 |
262
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 + ( ( 𝑉 − 𝐷 ) + 𝐷 ) ) = ( 𝐴 + 𝑉 ) ) |
| 264 |
261 263
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) + 𝐷 ) = ( 𝐴 + 𝑉 ) ) |
| 265 |
264
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) + 𝐷 ) − 1 ) = ( ( 𝐴 + 𝑉 ) − 1 ) ) |
| 266 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 267 |
254 109 266
|
addsubd |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) + 𝐷 ) − 1 ) = ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) + 𝐷 ) ) |
| 268 |
113 120 266
|
addsubd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑉 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝑉 ) ) |
| 269 |
265 267 268
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) + 𝐷 ) = ( ( 𝐴 − 1 ) + 𝑉 ) ) |
| 270 |
269
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 · ( ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) + 𝐷 ) ) = ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) |
| 271 |
260 270
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) + ( 𝑊 · 𝐷 ) ) = ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) |
| 272 |
271
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 + ( ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) + ( 𝑊 · 𝐷 ) ) ) = ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 273 |
259 272
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) + ( 𝑊 · 𝐷 ) ) = ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 274 |
251 273
|
eqtrid |
⊢ ( 𝜑 → ( 𝑇 + ( 𝑊 · 𝐷 ) ) = ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 275 |
274
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑖 ) + ( 𝑇 + ( 𝑊 · 𝐷 ) ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 276 |
275
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐸 ‘ 𝑖 ) + ( 𝑇 + ( 𝑊 · 𝐷 ) ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 277 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℂ ) |
| 278 |
80 77 277
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐸 ‘ 𝑖 ) + 𝐵 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( ( 𝐸 ‘ 𝑖 ) + ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 279 |
80 77
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐸 ‘ 𝑖 ) + 𝐵 ) = ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) |
| 280 |
279
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐸 ‘ 𝑖 ) + 𝐵 ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 281 |
276 278 280
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐸 ‘ 𝑖 ) + ( 𝑇 + ( 𝑊 · 𝐷 ) ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 282 |
246 250 281
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) = ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 283 |
282 245
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) = ( ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( ( 𝐸 ‘ 𝑖 ) + ( 𝑊 · 𝐷 ) ) ) ) |
| 284 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ⊆ dom 𝐺 |
| 285 |
284 7
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
| 286 |
285
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
| 287 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ℕ ∧ ( 𝐸 ‘ 𝑖 ) ∈ ℕ ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 288 |
160 162 79 287
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 289 |
153 288
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 290 |
286 289
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ) |
| 291 |
|
fvoveq1 |
⊢ ( 𝑦 = ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 292 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 293 |
|
fvex |
⊢ ( 𝐻 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ∈ V |
| 294 |
291 292 293
|
fvmpt |
⊢ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 295 |
290 294
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 296 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
| 297 |
25 9 10 296
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
| 298 |
11 297
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( ◡ 𝐹 “ { 𝐺 } ) ) |
| 299 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑉 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { 𝐺 } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝐺 ) ) ) |
| 300 |
146 299
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ 𝐹 “ { 𝐺 } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝐺 ) ) ) |
| 301 |
298 300
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝐺 ) ) |
| 302 |
301
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = 𝐺 ) |
| 303 |
301
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑉 ) ) |
| 304 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 − 1 ) = ( 𝐴 − 1 ) ) |
| 305 |
304
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 − 1 ) + 𝑉 ) = ( ( 𝐴 − 1 ) + 𝑉 ) ) |
| 306 |
305
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) = ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) |
| 307 |
306
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) = ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 308 |
307
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 309 |
308
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ) |
| 310 |
190
|
mptex |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ∈ V |
| 311 |
309 5 310
|
fvmpt |
⊢ ( 𝐴 ∈ ( 1 ... 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ) |
| 312 |
303 311
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ) |
| 313 |
302 312
|
eqtr3d |
⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ) |
| 314 |
313
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 315 |
314
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 316 |
282
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 317 |
295 315 316
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 318 |
317
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } = { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) |
| 319 |
318
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐻 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
| 320 |
217 283 319
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) |
| 321 |
320
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 322 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐵 ∈ ℂ ) |
| 323 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ∈ ℂ ) |
| 324 |
322 323 98
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) = ( 𝐵 + ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 325 |
127
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) = ( 𝐵 + ( ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 326 |
324 325
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) = ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) |
| 327 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑉 ∈ ℕ ) |
| 328 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑊 ∈ ℕ ) |
| 329 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
| 330 |
52 329
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
| 331 |
330
|
ne0d |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ≠ ∅ ) |
| 332 |
|
elfzuz3 |
⊢ ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) → 𝑊 ∈ ( ℤ≥ ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 333 |
290 332
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑊 ∈ ( ℤ≥ ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 334 |
12
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 335 |
|
uzid |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 336 |
334 335
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 337 |
336
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 338 |
79
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ ℕ0 ) |
| 339 |
|
uzaddcl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ ( 𝐸 ‘ 𝑖 ) ∈ ℕ0 ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 340 |
337 338 339
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 341 |
|
uztrn |
⊢ ( ( 𝑊 ∈ ( ℤ≥ ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∧ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑊 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 342 |
333 340 341
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑊 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 343 |
|
eluzle |
⊢ ( 𝑊 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝐵 ≤ 𝑊 ) |
| 344 |
342 343
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐵 ≤ 𝑊 ) |
| 345 |
344
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) 𝐵 ≤ 𝑊 ) |
| 346 |
|
r19.2z |
⊢ ( ( ( 1 ... 𝑀 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) 𝐵 ≤ 𝑊 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝐵 ≤ 𝑊 ) |
| 347 |
331 345 346
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝐵 ≤ 𝑊 ) |
| 348 |
|
idd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝐵 ≤ 𝑊 → 𝐵 ≤ 𝑊 ) ) |
| 349 |
348
|
rexlimiv |
⊢ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝐵 ≤ 𝑊 → 𝐵 ≤ 𝑊 ) |
| 350 |
347 349
|
syl |
⊢ ( 𝜑 → 𝐵 ≤ 𝑊 ) |
| 351 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑊 ∈ ℤ ) |
| 352 |
|
fznn |
⊢ ( 𝑊 ∈ ℤ → ( 𝐵 ∈ ( 1 ... 𝑊 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≤ 𝑊 ) ) ) |
| 353 |
351 352
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 1 ... 𝑊 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≤ 𝑊 ) ) ) |
| 354 |
12 350 353
|
mpbir2and |
⊢ ( 𝜑 → 𝐵 ∈ ( 1 ... 𝑊 ) ) |
| 355 |
354
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐵 ∈ ( 1 ... 𝑊 ) ) |
| 356 |
327 328 151 355
|
vdwlem3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 357 |
326 356
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
| 358 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 359 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ∈ V |
| 360 |
358 178 359
|
fvmpt |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 361 |
355 360
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 362 |
194
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ 𝐵 ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) ) |
| 363 |
326
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐻 ‘ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) − 1 ) + 𝑉 ) ) ) ) ) |
| 364 |
361 362 363
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐻 ‘ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( 𝐺 ‘ 𝐵 ) ) |
| 365 |
357 364
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( 𝐺 ‘ 𝐵 ) ) ) |
| 366 |
|
eleq1 |
⊢ ( 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) → ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ↔ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) ) |
| 367 |
|
fveqeq2 |
⊢ ( 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) → ( ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ↔ ( 𝐻 ‘ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( 𝐺 ‘ 𝐵 ) ) ) |
| 368 |
366 367
|
anbi12d |
⊢ ( 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) → ( ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) ↔ ( ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 369 |
365 368
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) → ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 370 |
369
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) → ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 371 |
12 87
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ) |
| 372 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ∈ ℕ ∧ ( 𝑊 · 𝐷 ) ∈ ℕ ) → ( 𝑧 ∈ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊 · 𝐷 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 373 |
139 371 65 372
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊 · 𝐷 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑧 = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) + ( 𝑚 · ( 𝑊 · 𝐷 ) ) ) ) ) |
| 374 |
|
fniniseg |
⊢ ( 𝐻 Fn ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) → ( 𝑧 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ 𝐵 ) } ) ↔ ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 375 |
212 374
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ 𝐵 ) } ) ↔ ( 𝑧 ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∧ ( 𝐻 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 376 |
370 373 375
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊 · 𝐷 ) ) → 𝑧 ∈ ( ◡ 𝐻 “ { ( 𝐺 ‘ 𝐵 ) } ) ) ) |
| 377 |
376
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊 · 𝐷 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐺 ‘ 𝐵 ) } ) ) |
| 378 |
6
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 379 |
378 51
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 380 |
|
eluzfz2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 381 |
|
iftrue |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) = 0 ) |
| 382 |
381
|
oveq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) = ( 0 + ( 𝑊 · 𝐷 ) ) ) |
| 383 |
|
ovex |
⊢ ( 0 + ( 𝑊 · 𝐷 ) ) ∈ V |
| 384 |
382 18 383
|
fvmpt |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) → ( 𝑃 ‘ ( 𝑀 + 1 ) ) = ( 0 + ( 𝑊 · 𝐷 ) ) ) |
| 385 |
379 380 384
|
3syl |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑀 + 1 ) ) = ( 0 + ( 𝑊 · 𝐷 ) ) ) |
| 386 |
101
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝑊 · 𝐷 ) ) = ( 𝑊 · 𝐷 ) ) |
| 387 |
385 386
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑀 + 1 ) ) = ( 𝑊 · 𝐷 ) ) |
| 388 |
387
|
oveq2d |
⊢ ( 𝜑 → ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) = ( 𝑇 + ( 𝑊 · 𝐷 ) ) ) |
| 389 |
388 274
|
eqtrd |
⊢ ( 𝜑 → ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) = ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) |
| 390 |
389 387
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) = ( ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ( AP ‘ 𝐾 ) ( 𝑊 · 𝐷 ) ) ) |
| 391 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 392 |
|
fvex |
⊢ ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ∈ V |
| 393 |
391 292 392
|
fvmpt |
⊢ ( 𝐵 ∈ ( 1 ... 𝑊 ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 394 |
354 393
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 395 |
313
|
fveq1d |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) ‘ 𝐵 ) ) |
| 396 |
389
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) = ( 𝐻 ‘ ( 𝐵 + ( 𝑊 · ( ( 𝐴 − 1 ) + 𝑉 ) ) ) ) ) |
| 397 |
394 395 396
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) = ( 𝐺 ‘ 𝐵 ) ) |
| 398 |
397
|
sneqd |
⊢ ( 𝜑 → { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } = { ( 𝐺 ‘ 𝐵 ) } ) |
| 399 |
398
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } ) = ( ◡ 𝐻 “ { ( 𝐺 ‘ 𝐵 ) } ) ) |
| 400 |
377 390 399
|
3sstr4d |
⊢ ( 𝜑 → ( ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } ) ) |
| 401 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) |
| 402 |
401
|
oveq2d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) = ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) |
| 403 |
402 401
|
oveq12d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) = ( ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) |
| 404 |
402
|
fveq2d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 405 |
404
|
sneqd |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } = { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } ) |
| 406 |
405
|
imaeq2d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } ) ) |
| 407 |
403 406
|
sseq12d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) } ) ) ) |
| 408 |
400 407
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑖 = ( 𝑀 + 1 ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 409 |
321 408
|
jaod |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∨ 𝑖 = ( 𝑀 + 1 ) ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 410 |
75 409
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) → ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 411 |
410
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) |
| 412 |
411
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) |
| 413 |
220
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ∃ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) |
| 414 |
|
rexun |
⊢ ( ∃ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ∨ ∃ 𝑖 ∈ { ( 𝑀 + 1 ) } 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) |
| 415 |
317
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 416 |
415
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
| 417 |
|
ovex |
⊢ ( 𝑀 + 1 ) ∈ V |
| 418 |
404
|
eqeq2d |
⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 419 |
417 418
|
rexsn |
⊢ ( ∃ 𝑖 ∈ { ( 𝑀 + 1 ) } 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 420 |
397
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ ( 𝑀 + 1 ) ) ) ) ↔ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) |
| 421 |
419 420
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ { ( 𝑀 + 1 ) } 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) |
| 422 |
416 421
|
orbi12d |
⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ∨ ∃ 𝑖 ∈ { ( 𝑀 + 1 ) } 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ↔ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 423 |
414 422
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 424 |
413 423
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 425 |
424
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 426 |
425
|
abbidv |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → { 𝑥 ∣ ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } = { 𝑥 ∣ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) } ) |
| 427 |
|
eqid |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) |
| 428 |
427
|
rnmpt |
⊢ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) = { 𝑥 ∣ ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) 𝑥 = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } |
| 429 |
15
|
rnmpt |
⊢ ran 𝐽 = { 𝑥 ∣ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } |
| 430 |
|
df-sn |
⊢ { ( 𝐺 ‘ 𝐵 ) } = { 𝑥 ∣ 𝑥 = ( 𝐺 ‘ 𝐵 ) } |
| 431 |
429 430
|
uneq12i |
⊢ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) = ( { 𝑥 ∣ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐺 ‘ 𝐵 ) } ) |
| 432 |
|
unab |
⊢ ( { 𝑥 ∣ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐺 ‘ 𝐵 ) } ) = { 𝑥 ∣ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) } |
| 433 |
431 432
|
eqtri |
⊢ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) = { 𝑥 ∣ ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 𝑥 = ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ∨ 𝑥 = ( 𝐺 ‘ 𝐵 ) ) } |
| 434 |
426 428 433
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) = ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) ) |
| 435 |
434
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( ♯ ‘ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) ) ) |
| 436 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
| 437 |
|
dffn4 |
⊢ ( 𝐽 Fn ( 1 ... 𝑀 ) ↔ 𝐽 : ( 1 ... 𝑀 ) –onto→ ran 𝐽 ) |
| 438 |
20 437
|
mpbi |
⊢ 𝐽 : ( 1 ... 𝑀 ) –onto→ ran 𝐽 |
| 439 |
|
fofi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝐽 : ( 1 ... 𝑀 ) –onto→ ran 𝐽 ) → ran 𝐽 ∈ Fin ) |
| 440 |
436 438 439
|
mp2an |
⊢ ran 𝐽 ∈ Fin |
| 441 |
440
|
a1i |
⊢ ( 𝜑 → ran 𝐽 ∈ Fin ) |
| 442 |
|
fvex |
⊢ ( 𝐺 ‘ 𝐵 ) ∈ V |
| 443 |
|
hashunsng |
⊢ ( ( 𝐺 ‘ 𝐵 ) ∈ V → ( ( ran 𝐽 ∈ Fin ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝐽 ) + 1 ) ) ) |
| 444 |
442 443
|
ax-mp |
⊢ ( ( ran 𝐽 ∈ Fin ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝐽 ) + 1 ) ) |
| 445 |
441 444
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ( ran 𝐽 ∪ { ( 𝐺 ‘ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝐽 ) + 1 ) ) |
| 446 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ran 𝐽 ) = 𝑀 ) |
| 447 |
446
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ( ♯ ‘ ran 𝐽 ) + 1 ) = ( 𝑀 + 1 ) ) |
| 448 |
435 445 447
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) |
| 449 |
412 448
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) |
| 450 |
|
oveq1 |
⊢ ( 𝑎 = 𝑇 → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) = ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) |
| 451 |
450
|
oveq1d |
⊢ ( 𝑎 = 𝑇 → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
| 452 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑇 → ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) |
| 453 |
452
|
sneqd |
⊢ ( 𝑎 = 𝑇 → { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
| 454 |
453
|
imaeq2d |
⊢ ( 𝑎 = 𝑇 → ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) |
| 455 |
451 454
|
sseq12d |
⊢ ( 𝑎 = 𝑇 → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
| 456 |
455
|
ralbidv |
⊢ ( 𝑎 = 𝑇 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
| 457 |
452
|
mpteq2dv |
⊢ ( 𝑎 = 𝑇 → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
| 458 |
457
|
rneqd |
⊢ ( 𝑎 = 𝑇 → ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
| 459 |
458
|
fveqeq2d |
⊢ ( 𝑎 = 𝑇 → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ↔ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) |
| 460 |
456 459
|
anbi12d |
⊢ ( 𝑎 = 𝑇 → ( ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) ) |
| 461 |
|
fveq1 |
⊢ ( 𝑑 = 𝑃 → ( 𝑑 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑖 ) ) |
| 462 |
461
|
oveq2d |
⊢ ( 𝑑 = 𝑃 → ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) = ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) |
| 463 |
462 461
|
oveq12d |
⊢ ( 𝑑 = 𝑃 → ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ) |
| 464 |
462
|
fveq2d |
⊢ ( 𝑑 = 𝑃 → ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) |
| 465 |
464
|
sneqd |
⊢ ( 𝑑 = 𝑃 → { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) |
| 466 |
465
|
imaeq2d |
⊢ ( 𝑑 = 𝑃 → ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) |
| 467 |
463 466
|
sseq12d |
⊢ ( 𝑑 = 𝑃 → ( ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 468 |
467
|
ralbidv |
⊢ ( 𝑑 = 𝑃 → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ) ) |
| 469 |
464
|
mpteq2dv |
⊢ ( 𝑑 = 𝑃 → ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) |
| 470 |
469
|
rneqd |
⊢ ( 𝑑 = 𝑃 → ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) |
| 471 |
470
|
fveqeq2d |
⊢ ( 𝑑 = 𝑃 → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ↔ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) |
| 472 |
468 471
|
anbi12d |
⊢ ( 𝑑 = 𝑃 → ( ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) ) |
| 473 |
460 472
|
rspc2ev |
⊢ ( ( 𝑇 ∈ ℕ ∧ 𝑃 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑃 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑇 + ( 𝑃 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) |
| 474 |
48 73 449 473
|
syl3anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) |
| 475 |
|
ovex |
⊢ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ∈ V |
| 476 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝐾 ∈ ℕ ) |
| 477 |
476
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝐾 ∈ ℕ0 ) |
| 478 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
| 479 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 𝑀 ∈ ℕ ) |
| 480 |
479
|
peano2nnd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 𝑀 + 1 ) ∈ ℕ ) |
| 481 |
|
eqid |
⊢ ( 1 ... ( 𝑀 + 1 ) ) = ( 1 ... ( 𝑀 + 1 ) ) |
| 482 |
475 477 478 480 481
|
vdwpc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ( ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐻 “ { ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( 𝐻 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = ( 𝑀 + 1 ) ) ) ) |
| 483 |
474 482
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ) |
| 484 |
483
|
orcd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐺 ‘ 𝐵 ) ∈ ran 𝐽 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |
| 485 |
46 484
|
pm2.61dan |
⊢ ( 𝜑 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |