| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v | ⊢ ( 𝜑  →  𝑉  ∈  ℕ ) | 
						
							| 2 |  | vdwlem3.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 3 |  | vdwlem4.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 4 |  | vdwlem4.h | ⊢ ( 𝜑  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 5 |  | vdwlem4.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑉 )  ↦  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | vdwlem7.g | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 8 |  | vdwlem7.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | vdwlem7.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 10 |  | vdwlem7.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 11 |  | vdwlem7.s | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ⊆  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 12 |  | vdwlem6.b | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 13 |  | vdwlem6.e | ⊢ ( 𝜑  →  𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 14 |  | vdwlem6.s | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 15 |  | vdwlem6.j | ⊢ 𝐽  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝐵  +  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 16 |  | vdwlem6.r | ⊢ ( 𝜑  →  ( ♯ ‘ ran  𝐽 )  =  𝑀 ) | 
						
							| 17 |  | vdwlem6.t | ⊢ 𝑇  =  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) ) | 
						
							| 18 |  | vdwlem6.p | ⊢ 𝑃  =  ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝐸 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 19 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑊  ∈  ℕ0 ) | 
						
							| 20 | 1 | nncnd | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 21 | 10 | nncnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 22 | 20 21 | subcld | ⊢ ( 𝜑  →  ( 𝑉  −  𝐷 )  ∈  ℂ ) | 
						
							| 23 | 9 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 22 23 | npcand | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  𝐷 )  −  𝐴 )  +  𝐴 )  =  ( 𝑉  −  𝐷 ) ) | 
						
							| 25 | 20 21 23 | subsub4d | ⊢ ( 𝜑  →  ( ( 𝑉  −  𝐷 )  −  𝐴 )  =  ( 𝑉  −  ( 𝐷  +  𝐴 ) ) ) | 
						
							| 26 | 21 23 | addcomd | ⊢ ( 𝜑  →  ( 𝐷  +  𝐴 )  =  ( 𝐴  +  𝐷 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( 𝑉  −  ( 𝐷  +  𝐴 ) )  =  ( 𝑉  −  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑉  −  𝐷 )  −  𝐴 )  =  ( 𝑉  −  ( 𝐴  +  𝐷 ) ) ) | 
						
							| 29 |  | cnvimass | ⊢ ( ◡ 𝐹  “  { 𝐺 } )  ⊆  dom  𝐹 | 
						
							| 30 | 1 2 3 4 5 | vdwlem4 | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 31 | 29 30 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { 𝐺 } )  ⊆  ( 1 ... 𝑉 ) ) | 
						
							| 32 |  | ssun2 | ⊢ ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 )  ⊆  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) | 
						
							| 33 |  | uz2m1nn | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐾  −  1 )  ∈  ℕ ) | 
						
							| 34 | 8 33 | syl | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ℕ ) | 
						
							| 35 | 9 10 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ℕ ) | 
						
							| 36 |  | vdwapid1 | ⊢ ( ( ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝐴  +  𝐷 )  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴  +  𝐷 )  ∈  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) | 
						
							| 37 | 34 35 10 36 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) | 
						
							| 38 | 32 37 | sselid | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 39 |  | eluz2nn | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 2 )  →  𝐾  ∈  ℕ ) | 
						
							| 40 | 8 39 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 41 | 40 | nncnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 42 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 43 |  | npcan | ⊢ ( ( 𝐾  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 44 | 41 42 43 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝜑  →  ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) )  =  ( AP ‘ 𝐾 ) ) | 
						
							| 46 | 45 | oveqd | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 47 |  | nnm1nn0 | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 48 | 40 47 | syl | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 49 |  | vdwapun | ⊢ ( ( ( 𝐾  −  1 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 50 | 48 9 10 49 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 51 | 46 50 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 52 | 38 51 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 53 | 11 52 | sseldd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 54 | 31 53 | sseldd | ⊢ ( 𝜑  →  ( 𝐴  +  𝐷 )  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 55 |  | elfzuz3 | ⊢ ( ( 𝐴  +  𝐷 )  ∈  ( 1 ... 𝑉 )  →  𝑉  ∈  ( ℤ≥ ‘ ( 𝐴  +  𝐷 ) ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝜑  →  𝑉  ∈  ( ℤ≥ ‘ ( 𝐴  +  𝐷 ) ) ) | 
						
							| 57 |  | uznn0sub | ⊢ ( 𝑉  ∈  ( ℤ≥ ‘ ( 𝐴  +  𝐷 ) )  →  ( 𝑉  −  ( 𝐴  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝜑  →  ( 𝑉  −  ( 𝐴  +  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 59 | 28 58 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑉  −  𝐷 )  −  𝐴 )  ∈  ℕ0 ) | 
						
							| 60 |  | nn0nnaddcl | ⊢ ( ( ( ( 𝑉  −  𝐷 )  −  𝐴 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ )  →  ( ( ( 𝑉  −  𝐷 )  −  𝐴 )  +  𝐴 )  ∈  ℕ ) | 
						
							| 61 | 59 9 60 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  𝐷 )  −  𝐴 )  +  𝐴 )  ∈  ℕ ) | 
						
							| 62 | 24 61 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑉  −  𝐷 )  ∈  ℕ ) | 
						
							| 63 | 9 62 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝑉  −  𝐷 ) )  ∈  ℕ ) | 
						
							| 64 |  | nnm1nn0 | ⊢ ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  ∈  ℕ  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  ∈  ℕ0 ) | 
						
							| 65 | 63 64 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 )  ∈  ℕ0 ) | 
						
							| 66 | 19 65 | nn0mulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  ∈  ℕ0 ) | 
						
							| 67 |  | nnnn0addcl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) )  ∈  ℕ0 )  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  ∈  ℕ ) | 
						
							| 68 | 12 66 67 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  ∈  ℕ ) | 
						
							| 69 | 17 68 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℕ ) |