Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
3 |
|
vdwlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
4 |
|
vdwlem4.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
5 |
|
vdwlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ) |
6 |
|
vdwlem7.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
vdwlem7.g |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
8 |
|
vdwlem7.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
vdwlem7.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
10 |
|
vdwlem7.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
11 |
|
vdwlem7.s |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐺 } ) ) |
12 |
|
vdwlem6.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
13 |
|
vdwlem6.e |
⊢ ( 𝜑 → 𝐸 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
14 |
|
vdwlem6.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) } ) ) |
15 |
|
vdwlem6.j |
⊢ 𝐽 = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝐵 + ( 𝐸 ‘ 𝑖 ) ) ) ) |
16 |
|
vdwlem6.r |
⊢ ( 𝜑 → ( ♯ ‘ ran 𝐽 ) = 𝑀 ) |
17 |
|
vdwlem6.t |
⊢ 𝑇 = ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) |
18 |
|
vdwlem6.p |
⊢ 𝑃 = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝐸 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ) |
19 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑊 ∈ ℕ0 ) |
20 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
21 |
10
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
22 |
20 21
|
subcld |
⊢ ( 𝜑 → ( 𝑉 − 𝐷 ) ∈ ℂ ) |
23 |
9
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
24 |
22 23
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝑉 − 𝐷 ) − 𝐴 ) + 𝐴 ) = ( 𝑉 − 𝐷 ) ) |
25 |
20 21 23
|
subsub4d |
⊢ ( 𝜑 → ( ( 𝑉 − 𝐷 ) − 𝐴 ) = ( 𝑉 − ( 𝐷 + 𝐴 ) ) ) |
26 |
21 23
|
addcomd |
⊢ ( 𝜑 → ( 𝐷 + 𝐴 ) = ( 𝐴 + 𝐷 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑉 − ( 𝐷 + 𝐴 ) ) = ( 𝑉 − ( 𝐴 + 𝐷 ) ) ) |
28 |
25 27
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑉 − 𝐷 ) − 𝐴 ) = ( 𝑉 − ( 𝐴 + 𝐷 ) ) ) |
29 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 𝐺 } ) ⊆ dom 𝐹 |
30 |
1 2 3 4 5
|
vdwlem4 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
31 |
29 30
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝐺 } ) ⊆ ( 1 ... 𝑉 ) ) |
32 |
|
ssun2 |
⊢ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ⊆ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
33 |
|
uz2m1nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐾 − 1 ) ∈ ℕ ) |
34 |
8 33
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ ) |
35 |
9 10
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ℕ ) |
36 |
|
vdwapid1 |
⊢ ( ( ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝐴 + 𝐷 ) ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
37 |
34 35 10 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
38 |
32 37
|
sselid |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
39 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
40 |
8 39
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
41 |
40
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
42 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
43 |
|
npcan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
44 |
41 42 43
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( AP ‘ 𝐾 ) ) |
46 |
45
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
47 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
48 |
40 47
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
49 |
|
vdwapun |
⊢ ( ( ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
50 |
48 9 10 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
51 |
46 50
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
52 |
38 51
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
53 |
11 52
|
sseldd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( ◡ 𝐹 “ { 𝐺 } ) ) |
54 |
31 53
|
sseldd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( 1 ... 𝑉 ) ) |
55 |
|
elfzuz3 |
⊢ ( ( 𝐴 + 𝐷 ) ∈ ( 1 ... 𝑉 ) → 𝑉 ∈ ( ℤ≥ ‘ ( 𝐴 + 𝐷 ) ) ) |
56 |
54 55
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ ( 𝐴 + 𝐷 ) ) ) |
57 |
|
uznn0sub |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ ( 𝐴 + 𝐷 ) ) → ( 𝑉 − ( 𝐴 + 𝐷 ) ) ∈ ℕ0 ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → ( 𝑉 − ( 𝐴 + 𝐷 ) ) ∈ ℕ0 ) |
59 |
28 58
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑉 − 𝐷 ) − 𝐴 ) ∈ ℕ0 ) |
60 |
|
nn0nnaddcl |
⊢ ( ( ( ( 𝑉 − 𝐷 ) − 𝐴 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ ) → ( ( ( 𝑉 − 𝐷 ) − 𝐴 ) + 𝐴 ) ∈ ℕ ) |
61 |
59 9 60
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑉 − 𝐷 ) − 𝐴 ) + 𝐴 ) ∈ ℕ ) |
62 |
24 61
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑉 − 𝐷 ) ∈ ℕ ) |
63 |
9 62
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑉 − 𝐷 ) ) ∈ ℕ ) |
64 |
|
nnm1nn0 |
⊢ ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) ∈ ℕ → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ∈ ℕ0 ) |
65 |
63 64
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ∈ ℕ0 ) |
66 |
19 65
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ∈ ℕ0 ) |
67 |
|
nnnn0addcl |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ∈ ℕ0 ) → ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) ∈ ℕ ) |
68 |
12 66 67
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) ∈ ℕ ) |
69 |
17 68
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℕ ) |