| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssun1 | ⊢ { 𝐴 }  ⊆  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) | 
						
							| 2 |  | snssg | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) )  ↔  { 𝐴 }  ⊆  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴  ∈  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) )  ↔  { 𝐴 }  ⊆  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) ) | 
						
							| 4 | 1 3 | mpbiri | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  𝐴  ∈  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 5 |  | nncn | ⊢ ( 𝐾  ∈  ℕ  →  𝐾  ∈  ℂ ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  𝐾  ∈  ℂ ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | npcan | ⊢ ( ( 𝐾  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( ( 𝐾  −  1 )  +  1 )  =  𝐾 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) )  =  ( AP ‘ 𝐾 ) ) | 
						
							| 11 | 10 | oveqd | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) | 
						
							| 12 |  | nnm1nn0 | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 13 |  | vdwapun | ⊢ ( ( ( 𝐾  −  1 )  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 14 | 12 13 | syl3an1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( ( 𝐾  −  1 )  +  1 ) ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 15 | 11 14 | eqtr3d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  𝐷 ) ( AP ‘ ( 𝐾  −  1 ) ) 𝐷 ) ) ) | 
						
							| 16 | 4 15 | eleqtrrd | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐷  ∈  ℕ )  →  𝐴  ∈  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |