Metamath Proof Explorer


Theorem vdwapid1

Description: The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Assertion vdwapid1 ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ssun1 { 𝐴 } ⊆ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) )
2 snssg ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ↔ { 𝐴 } ⊆ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) )
3 2 3ad2ant2 ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ∈ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ↔ { 𝐴 } ⊆ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) )
4 1 3 mpbiri ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) )
5 nncn ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ )
6 5 3ad2ant1 ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐾 ∈ ℂ )
7 ax-1cn 1 ∈ ℂ
8 npcan ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 )
9 6 7 8 sylancl ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 )
10 9 fveq2d ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( AP ‘ 𝐾 ) )
11 10 oveqd ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) )
12 nnm1nn0 ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 )
13 vdwapun ( ( ( 𝐾 − 1 ) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) )
14 12 13 syl3an1 ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) )
15 11 14 eqtr3d ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) )
16 4 15 eleqtrrd ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) )