| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssun1 |  |-  { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 2 |  | snssg |  |-  ( A e. NN -> ( A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) <-> { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) <-> { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) ) | 
						
							| 4 | 1 3 | mpbiri |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 5 |  | nncn |  |-  ( K e. NN -> K e. CC ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> K e. CC ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | npcan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 9 | 6 7 8 | sylancl |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( AP ` ( ( K - 1 ) + 1 ) ) = ( AP ` K ) ) | 
						
							| 11 | 10 | oveqd |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( A ( AP ` K ) D ) ) | 
						
							| 12 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 13 |  | vdwapun |  |-  ( ( ( K - 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 14 | 12 13 | syl3an1 |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 15 | 11 14 | eqtr3d |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` K ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 16 | 4 15 | eleqtrrd |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) |