| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
|- { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) |
| 2 |
|
snssg |
|- ( A e. NN -> ( A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) <-> { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) ) |
| 3 |
2
|
3ad2ant2 |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) <-> { A } C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) ) |
| 4 |
1 3
|
mpbiri |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
| 5 |
|
nncn |
|- ( K e. NN -> K e. CC ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> K e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
| 9 |
6 7 8
|
sylancl |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( ( K - 1 ) + 1 ) = K ) |
| 10 |
9
|
fveq2d |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( AP ` ( ( K - 1 ) + 1 ) ) = ( AP ` K ) ) |
| 11 |
10
|
oveqd |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( A ( AP ` K ) D ) ) |
| 12 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
| 13 |
|
vdwapun |
|- ( ( ( K - 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
| 14 |
12 13
|
syl3an1 |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
| 15 |
11 14
|
eqtr3d |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> ( A ( AP ` K ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
| 16 |
4 15
|
eleqtrrd |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) |