Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
3 |
|
vdwlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
4 |
|
vdwlem4.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
5 |
|
vdwlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ) |
6 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
7 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑉 ∈ ℕ ) |
8 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑊 ∈ ℕ ) |
9 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑥 ∈ ( 1 ... 𝑉 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑦 ∈ ( 1 ... 𝑊 ) ) |
11 |
7 8 9 10
|
vdwlem3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
12 |
6 11
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ∈ 𝑅 ) |
13 |
12
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) → 𝑅 ∈ Fin ) |
15 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
16 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑊 ) ∈ V ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↔ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↔ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) |
18 |
13 17
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑉 ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
19 |
18 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |