Metamath Proof Explorer


Theorem vdwlem4

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v ( 𝜑𝑉 ∈ ℕ )
vdwlem3.w ( 𝜑𝑊 ∈ ℕ )
vdwlem4.r ( 𝜑𝑅 ∈ Fin )
vdwlem4.h ( 𝜑𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 )
vdwlem4.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) )
Assertion vdwlem4 ( 𝜑𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅m ( 1 ... 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 vdwlem3.v ( 𝜑𝑉 ∈ ℕ )
2 vdwlem3.w ( 𝜑𝑊 ∈ ℕ )
3 vdwlem4.r ( 𝜑𝑅 ∈ Fin )
4 vdwlem4.h ( 𝜑𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 )
5 vdwlem4.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) )
6 4 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 )
7 1 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑉 ∈ ℕ )
8 2 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑊 ∈ ℕ )
9 simplr ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑥 ∈ ( 1 ... 𝑉 ) )
10 simpr ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → 𝑦 ∈ ( 1 ... 𝑊 ) )
11 7 8 9 10 vdwlem3 ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ∈ ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) )
12 6 11 ffvelrnd ( ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) ∧ 𝑦 ∈ ( 1 ... 𝑊 ) ) → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ∈ 𝑅 )
13 12 fmpttd ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 )
14 3 adantr ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) → 𝑅 ∈ Fin )
15 ovex ( 1 ... 𝑊 ) ∈ V
16 elmapg ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑊 ) ∈ V ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅m ( 1 ... 𝑊 ) ) ↔ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 ) )
17 14 15 16 sylancl ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅m ( 1 ... 𝑊 ) ) ↔ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) : ( 1 ... 𝑊 ) ⟶ 𝑅 ) )
18 13 17 mpbird ( ( 𝜑𝑥 ∈ ( 1 ... 𝑉 ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ∈ ( 𝑅m ( 1 ... 𝑊 ) ) )
19 18 5 fmptd ( 𝜑𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅m ( 1 ... 𝑊 ) ) )