| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v |  |-  ( ph -> V e. NN ) | 
						
							| 2 |  | vdwlem3.w |  |-  ( ph -> W e. NN ) | 
						
							| 3 |  | vdwlem4.r |  |-  ( ph -> R e. Fin ) | 
						
							| 4 |  | vdwlem4.h |  |-  ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 5 |  | vdwlem4.f |  |-  F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | vdwlem7.g |  |-  ( ph -> G : ( 1 ... W ) --> R ) | 
						
							| 8 |  | vdwlem7.k |  |-  ( ph -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 9 |  | vdwlem7.a |  |-  ( ph -> A e. NN ) | 
						
							| 10 |  | vdwlem7.d |  |-  ( ph -> D e. NN ) | 
						
							| 11 |  | vdwlem7.s |  |-  ( ph -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) | 
						
							| 12 |  | vdwlem6.b |  |-  ( ph -> B e. NN ) | 
						
							| 13 |  | vdwlem6.e |  |-  ( ph -> E : ( 1 ... M ) --> NN ) | 
						
							| 14 |  | vdwlem6.s |  |-  ( ph -> A. i e. ( 1 ... M ) ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 15 |  | vdwlem6.j |  |-  J = ( i e. ( 1 ... M ) |-> ( G ` ( B + ( E ` i ) ) ) ) | 
						
							| 16 |  | vdwlem6.r |  |-  ( ph -> ( # ` ran J ) = M ) | 
						
							| 17 |  | vdwlem6.t |  |-  T = ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) | 
						
							| 18 |  | vdwlem6.p |  |-  P = ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) ) | 
						
							| 19 | 2 | nnnn0d |  |-  ( ph -> W e. NN0 ) | 
						
							| 20 | 1 | nncnd |  |-  ( ph -> V e. CC ) | 
						
							| 21 | 10 | nncnd |  |-  ( ph -> D e. CC ) | 
						
							| 22 | 20 21 | subcld |  |-  ( ph -> ( V - D ) e. CC ) | 
						
							| 23 | 9 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 24 | 22 23 | npcand |  |-  ( ph -> ( ( ( V - D ) - A ) + A ) = ( V - D ) ) | 
						
							| 25 | 20 21 23 | subsub4d |  |-  ( ph -> ( ( V - D ) - A ) = ( V - ( D + A ) ) ) | 
						
							| 26 | 21 23 | addcomd |  |-  ( ph -> ( D + A ) = ( A + D ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( V - ( D + A ) ) = ( V - ( A + D ) ) ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ph -> ( ( V - D ) - A ) = ( V - ( A + D ) ) ) | 
						
							| 29 |  | cnvimass |  |-  ( `' F " { G } ) C_ dom F | 
						
							| 30 | 1 2 3 4 5 | vdwlem4 |  |-  ( ph -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) | 
						
							| 31 | 29 30 | fssdm |  |-  ( ph -> ( `' F " { G } ) C_ ( 1 ... V ) ) | 
						
							| 32 |  | ssun2 |  |-  ( ( A + D ) ( AP ` ( K - 1 ) ) D ) C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 33 |  | uz2m1nn |  |-  ( K e. ( ZZ>= ` 2 ) -> ( K - 1 ) e. NN ) | 
						
							| 34 | 8 33 | syl |  |-  ( ph -> ( K - 1 ) e. NN ) | 
						
							| 35 | 9 10 | nnaddcld |  |-  ( ph -> ( A + D ) e. NN ) | 
						
							| 36 |  | vdwapid1 |  |-  ( ( ( K - 1 ) e. NN /\ ( A + D ) e. NN /\ D e. NN ) -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 37 | 34 35 10 36 | syl3anc |  |-  ( ph -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 38 | 32 37 | sselid |  |-  ( ph -> ( A + D ) e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 39 |  | eluz2nn |  |-  ( K e. ( ZZ>= ` 2 ) -> K e. NN ) | 
						
							| 40 | 8 39 | syl |  |-  ( ph -> K e. NN ) | 
						
							| 41 | 40 | nncnd |  |-  ( ph -> K e. CC ) | 
						
							| 42 |  | ax-1cn |  |-  1 e. CC | 
						
							| 43 |  | npcan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 44 | 41 42 43 | sylancl |  |-  ( ph -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ph -> ( AP ` ( ( K - 1 ) + 1 ) ) = ( AP ` K ) ) | 
						
							| 46 | 45 | oveqd |  |-  ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( A ( AP ` K ) D ) ) | 
						
							| 47 |  | nnm1nn0 |  |-  ( K e. NN -> ( K - 1 ) e. NN0 ) | 
						
							| 48 | 40 47 | syl |  |-  ( ph -> ( K - 1 ) e. NN0 ) | 
						
							| 49 |  | vdwapun |  |-  ( ( ( K - 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 50 | 48 9 10 49 | syl3anc |  |-  ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 51 | 46 50 | eqtr3d |  |-  ( ph -> ( A ( AP ` K ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 52 | 38 51 | eleqtrrd |  |-  ( ph -> ( A + D ) e. ( A ( AP ` K ) D ) ) | 
						
							| 53 | 11 52 | sseldd |  |-  ( ph -> ( A + D ) e. ( `' F " { G } ) ) | 
						
							| 54 | 31 53 | sseldd |  |-  ( ph -> ( A + D ) e. ( 1 ... V ) ) | 
						
							| 55 |  | elfzuz3 |  |-  ( ( A + D ) e. ( 1 ... V ) -> V e. ( ZZ>= ` ( A + D ) ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ph -> V e. ( ZZ>= ` ( A + D ) ) ) | 
						
							| 57 |  | uznn0sub |  |-  ( V e. ( ZZ>= ` ( A + D ) ) -> ( V - ( A + D ) ) e. NN0 ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> ( V - ( A + D ) ) e. NN0 ) | 
						
							| 59 | 28 58 | eqeltrd |  |-  ( ph -> ( ( V - D ) - A ) e. NN0 ) | 
						
							| 60 |  | nn0nnaddcl |  |-  ( ( ( ( V - D ) - A ) e. NN0 /\ A e. NN ) -> ( ( ( V - D ) - A ) + A ) e. NN ) | 
						
							| 61 | 59 9 60 | syl2anc |  |-  ( ph -> ( ( ( V - D ) - A ) + A ) e. NN ) | 
						
							| 62 | 24 61 | eqeltrrd |  |-  ( ph -> ( V - D ) e. NN ) | 
						
							| 63 | 9 62 | nnaddcld |  |-  ( ph -> ( A + ( V - D ) ) e. NN ) | 
						
							| 64 |  | nnm1nn0 |  |-  ( ( A + ( V - D ) ) e. NN -> ( ( A + ( V - D ) ) - 1 ) e. NN0 ) | 
						
							| 65 | 63 64 | syl |  |-  ( ph -> ( ( A + ( V - D ) ) - 1 ) e. NN0 ) | 
						
							| 66 | 19 65 | nn0mulcld |  |-  ( ph -> ( W x. ( ( A + ( V - D ) ) - 1 ) ) e. NN0 ) | 
						
							| 67 |  | nnnn0addcl |  |-  ( ( B e. NN /\ ( W x. ( ( A + ( V - D ) ) - 1 ) ) e. NN0 ) -> ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) e. NN ) | 
						
							| 68 | 12 66 67 | syl2anc |  |-  ( ph -> ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) e. NN ) | 
						
							| 69 | 17 68 | eqeltrid |  |-  ( ph -> T e. NN ) |