| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v |  |-  ( ph -> V e. NN ) | 
						
							| 2 |  | vdwlem3.w |  |-  ( ph -> W e. NN ) | 
						
							| 3 |  | vdwlem4.r |  |-  ( ph -> R e. Fin ) | 
						
							| 4 |  | vdwlem4.h |  |-  ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 5 |  | vdwlem4.f |  |-  F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | vdwlem7.g |  |-  ( ph -> G : ( 1 ... W ) --> R ) | 
						
							| 8 |  | vdwlem7.k |  |-  ( ph -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 9 |  | vdwlem7.a |  |-  ( ph -> A e. NN ) | 
						
							| 10 |  | vdwlem7.d |  |-  ( ph -> D e. NN ) | 
						
							| 11 |  | vdwlem7.s |  |-  ( ph -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) | 
						
							| 12 |  | vdwlem6.b |  |-  ( ph -> B e. NN ) | 
						
							| 13 |  | vdwlem6.e |  |-  ( ph -> E : ( 1 ... M ) --> NN ) | 
						
							| 14 |  | vdwlem6.s |  |-  ( ph -> A. i e. ( 1 ... M ) ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 15 |  | vdwlem6.j |  |-  J = ( i e. ( 1 ... M ) |-> ( G ` ( B + ( E ` i ) ) ) ) | 
						
							| 16 |  | vdwlem6.r |  |-  ( ph -> ( # ` ran J ) = M ) | 
						
							| 17 |  | vdwlem6.t |  |-  T = ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) | 
						
							| 18 |  | vdwlem6.p |  |-  P = ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) ) | 
						
							| 19 |  | fvex |  |-  ( G ` ( B + ( E ` i ) ) ) e. _V | 
						
							| 20 | 19 15 | fnmpti |  |-  J Fn ( 1 ... M ) | 
						
							| 21 |  | fvelrnb |  |-  ( J Fn ( 1 ... M ) -> ( ( G ` B ) e. ran J <-> E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( ( G ` B ) e. ran J <-> E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) ) | 
						
							| 23 | 3 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> R e. Fin ) | 
						
							| 24 |  | eluz2nn |  |-  ( K e. ( ZZ>= ` 2 ) -> K e. NN ) | 
						
							| 25 | 8 24 | syl |  |-  ( ph -> K e. NN ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> K e. NN ) | 
						
							| 27 | 2 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> W e. NN ) | 
						
							| 28 | 7 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> G : ( 1 ... W ) --> R ) | 
						
							| 29 | 12 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> B e. NN ) | 
						
							| 30 | 6 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> M e. NN ) | 
						
							| 31 | 13 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> E : ( 1 ... M ) --> NN ) | 
						
							| 32 | 14 | adantr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> A. i e. ( 1 ... M ) ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 33 |  | simprl |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> m e. ( 1 ... M ) ) | 
						
							| 34 |  | simprr |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( J ` m ) = ( G ` B ) ) | 
						
							| 35 |  | fveq2 |  |-  ( i = m -> ( E ` i ) = ( E ` m ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( i = m -> ( B + ( E ` i ) ) = ( B + ( E ` m ) ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( i = m -> ( G ` ( B + ( E ` i ) ) ) = ( G ` ( B + ( E ` m ) ) ) ) | 
						
							| 38 |  | fvex |  |-  ( G ` ( B + ( E ` m ) ) ) e. _V | 
						
							| 39 | 37 15 38 | fvmpt |  |-  ( m e. ( 1 ... M ) -> ( J ` m ) = ( G ` ( B + ( E ` m ) ) ) ) | 
						
							| 40 | 33 39 | syl |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( J ` m ) = ( G ` ( B + ( E ` m ) ) ) ) | 
						
							| 41 | 34 40 | eqtr3d |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( G ` B ) = ( G ` ( B + ( E ` m ) ) ) ) | 
						
							| 42 | 23 26 27 28 29 30 31 32 33 41 | vdwlem1 |  |-  ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( K + 1 ) MonoAP G ) | 
						
							| 43 | 42 | rexlimdvaa |  |-  ( ph -> ( E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) -> ( K + 1 ) MonoAP G ) ) | 
						
							| 44 | 22 43 | biimtrid |  |-  ( ph -> ( ( G ` B ) e. ran J -> ( K + 1 ) MonoAP G ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ph /\ ( G ` B ) e. ran J ) -> ( K + 1 ) MonoAP G ) | 
						
							| 46 | 45 | olcd |  |-  ( ( ph /\ ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | vdwlem5 |  |-  ( ph -> T e. NN ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> T e. NN ) | 
						
							| 49 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 50 | 49 | a1i |  |-  ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j = ( M + 1 ) ) -> 0 e. NN0 ) | 
						
							| 51 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 52 | 6 51 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 54 |  | elfzp1 |  |-  ( M e. ( ZZ>= ` 1 ) -> ( j e. ( 1 ... ( M + 1 ) ) <-> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( j e. ( 1 ... ( M + 1 ) ) <-> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) ) | 
						
							| 56 | 55 | biimpa |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) | 
						
							| 57 | 56 | ord |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( -. j e. ( 1 ... M ) -> j = ( M + 1 ) ) ) | 
						
							| 58 | 57 | con1d |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( -. j = ( M + 1 ) -> j e. ( 1 ... M ) ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ -. j = ( M + 1 ) ) -> j e. ( 1 ... M ) ) | 
						
							| 60 | 13 | ad2antrr |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> E : ( 1 ... M ) --> NN ) | 
						
							| 61 | 60 | ffvelcdmda |  |-  ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j e. ( 1 ... M ) ) -> ( E ` j ) e. NN ) | 
						
							| 62 | 61 | nnnn0d |  |-  ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j e. ( 1 ... M ) ) -> ( E ` j ) e. NN0 ) | 
						
							| 63 | 59 62 | syldan |  |-  ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ -. j = ( M + 1 ) ) -> ( E ` j ) e. NN0 ) | 
						
							| 64 | 50 63 | ifclda |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) e. NN0 ) | 
						
							| 65 | 2 10 | nnmulcld |  |-  ( ph -> ( W x. D ) e. NN ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( W x. D ) e. NN ) | 
						
							| 67 |  | nn0nnaddcl |  |-  ( ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) e. NN0 /\ ( W x. D ) e. NN ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) e. NN ) | 
						
							| 68 | 64 66 67 | syl2anc |  |-  ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) e. NN ) | 
						
							| 69 | 68 18 | fmptd |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> P : ( 1 ... ( M + 1 ) ) --> NN ) | 
						
							| 70 |  | nnex |  |-  NN e. _V | 
						
							| 71 |  | ovex |  |-  ( 1 ... ( M + 1 ) ) e. _V | 
						
							| 72 | 70 71 | elmap |  |-  ( P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) <-> P : ( 1 ... ( M + 1 ) ) --> NN ) | 
						
							| 73 | 69 72 | sylibr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 74 |  | elfzp1 |  |-  ( M e. ( ZZ>= ` 1 ) -> ( i e. ( 1 ... ( M + 1 ) ) <-> ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) ) ) | 
						
							| 75 | 52 74 | syl |  |-  ( ph -> ( i e. ( 1 ... ( M + 1 ) ) <-> ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) ) ) | 
						
							| 76 | 12 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> B e. NN ) | 
						
							| 77 | 76 | nncnd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> B e. CC ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. CC ) | 
						
							| 79 | 13 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. NN ) | 
						
							| 80 | 79 | nncnd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. CC ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( E ` i ) e. CC ) | 
						
							| 82 | 78 81 | addcld |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( E ` i ) ) e. CC ) | 
						
							| 83 |  | nnm1nn0 |  |-  ( A e. NN -> ( A - 1 ) e. NN0 ) | 
						
							| 84 | 9 83 | syl |  |-  ( ph -> ( A - 1 ) e. NN0 ) | 
						
							| 85 |  | nn0nnaddcl |  |-  ( ( ( A - 1 ) e. NN0 /\ V e. NN ) -> ( ( A - 1 ) + V ) e. NN ) | 
						
							| 86 | 84 1 85 | syl2anc |  |-  ( ph -> ( ( A - 1 ) + V ) e. NN ) | 
						
							| 87 | 2 86 | nnmulcld |  |-  ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) | 
						
							| 88 | 87 | nncnd |  |-  ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) | 
						
							| 89 | 88 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) | 
						
							| 90 |  | elfznn0 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) | 
						
							| 92 | 91 | nn0cnd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) | 
						
							| 93 | 92 | adantlr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) | 
						
							| 94 | 93 81 | mulcld |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( E ` i ) ) e. CC ) | 
						
							| 95 | 65 | nnnn0d |  |-  ( ph -> ( W x. D ) e. NN0 ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. D ) e. NN0 ) | 
						
							| 97 | 91 96 | nn0mulcld |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. NN0 ) | 
						
							| 98 | 97 | nn0cnd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. CC ) | 
						
							| 99 | 98 | adantlr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. CC ) | 
						
							| 100 | 82 89 94 99 | add4d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 101 | 65 | nncnd |  |-  ( ph -> ( W x. D ) e. CC ) | 
						
							| 102 | 101 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. D ) e. CC ) | 
						
							| 103 | 93 81 102 | adddid |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( ( E ` i ) + ( W x. D ) ) ) = ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 105 | 2 | nncnd |  |-  ( ph -> W e. CC ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. CC ) | 
						
							| 107 | 86 | nncnd |  |-  ( ph -> ( ( A - 1 ) + V ) e. CC ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A - 1 ) + V ) e. CC ) | 
						
							| 109 | 10 | nncnd |  |-  ( ph -> D e. CC ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> D e. CC ) | 
						
							| 111 | 92 110 | mulcld |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) | 
						
							| 112 | 106 108 111 | adddid |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( W x. ( m x. D ) ) ) ) | 
						
							| 113 | 9 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) | 
						
							| 115 |  | 1cnd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. CC ) | 
						
							| 116 | 114 111 115 | addsubd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) - 1 ) = ( ( A - 1 ) + ( m x. D ) ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + ( m x. D ) ) - 1 ) + V ) = ( ( ( A - 1 ) + ( m x. D ) ) + V ) ) | 
						
							| 118 | 84 | nn0cnd |  |-  ( ph -> ( A - 1 ) e. CC ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A - 1 ) e. CC ) | 
						
							| 120 | 1 | nncnd |  |-  ( ph -> V e. CC ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. CC ) | 
						
							| 122 | 119 111 121 | add32d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A - 1 ) + ( m x. D ) ) + V ) = ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) | 
						
							| 123 | 117 122 | eqtrd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + ( m x. D ) ) - 1 ) + V ) = ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) | 
						
							| 124 | 123 | oveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( W x. ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) ) | 
						
							| 125 | 92 106 110 | mul12d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) = ( W x. ( m x. D ) ) ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( W x. ( m x. D ) ) ) ) | 
						
							| 127 | 112 124 126 | 3eqtr4d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) | 
						
							| 128 | 127 | adantlr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 130 | 100 104 129 | 3eqtr4d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) | 
						
							| 131 | 1 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. NN ) | 
						
							| 132 | 2 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. NN ) | 
						
							| 133 | 11 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) | 
						
							| 134 |  | eqid |  |-  ( A + ( m x. D ) ) = ( A + ( m x. D ) ) | 
						
							| 135 |  | oveq1 |  |-  ( n = m -> ( n x. D ) = ( m x. D ) ) | 
						
							| 136 | 135 | oveq2d |  |-  ( n = m -> ( A + ( n x. D ) ) = ( A + ( m x. D ) ) ) | 
						
							| 137 | 136 | rspceeqv |  |-  ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( A + ( m x. D ) ) = ( A + ( m x. D ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) | 
						
							| 138 | 134 137 | mpan2 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) | 
						
							| 139 | 25 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 140 |  | vdwapval |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) | 
						
							| 141 | 139 9 10 140 | syl3anc |  |-  ( ph -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) | 
						
							| 142 | 141 | biimpar |  |-  ( ( ph /\ E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) | 
						
							| 143 | 138 142 | sylan2 |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) | 
						
							| 144 | 133 143 | sseldd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( `' F " { G } ) ) | 
						
							| 145 | 1 2 3 4 5 | vdwlem4 |  |-  ( ph -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) | 
						
							| 146 | 145 | ffnd |  |-  ( ph -> F Fn ( 1 ... V ) ) | 
						
							| 147 |  | fniniseg |  |-  ( F Fn ( 1 ... V ) -> ( ( A + ( m x. D ) ) e. ( `' F " { G } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) ) | 
						
							| 148 | 146 147 | syl |  |-  ( ph -> ( ( A + ( m x. D ) ) e. ( `' F " { G } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) ) | 
						
							| 149 | 148 | biimpa |  |-  ( ( ph /\ ( A + ( m x. D ) ) e. ( `' F " { G } ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) | 
						
							| 150 | 144 149 | syldan |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) | 
						
							| 151 | 150 | simpld |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... V ) ) | 
						
							| 152 | 151 | adantlr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... V ) ) | 
						
							| 153 | 14 | r19.21bi |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 155 |  | eqid |  |-  ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) | 
						
							| 156 |  | oveq1 |  |-  ( n = m -> ( n x. ( E ` i ) ) = ( m x. ( E ` i ) ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( n = m -> ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) | 
						
							| 158 | 157 | rspceeqv |  |-  ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) | 
						
							| 159 | 155 158 | mpan2 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) | 
						
							| 160 | 25 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN ) | 
						
							| 161 | 160 | nnnn0d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN0 ) | 
						
							| 162 | 76 79 | nnaddcld |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. NN ) | 
						
							| 163 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( B + ( E ` i ) ) e. NN /\ ( E ` i ) e. NN ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) ) | 
						
							| 164 | 161 162 79 163 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) ) | 
						
							| 165 | 164 | biimpar |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) | 
						
							| 166 | 159 165 | sylan2 |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) | 
						
							| 167 | 154 166 | sseldd |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 168 | 7 | ffnd |  |-  ( ph -> G Fn ( 1 ... W ) ) | 
						
							| 169 | 168 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> G Fn ( 1 ... W ) ) | 
						
							| 170 |  | fniniseg |  |-  ( G Fn ( 1 ... W ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 171 | 169 170 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 172 | 171 | biimpa |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 173 | 167 172 | syldan |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 174 | 173 | simpld |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) ) | 
						
							| 175 | 131 132 152 174 | vdwlem3 |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 176 | 130 175 | eqeltrd |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 177 |  | fvoveq1 |  |-  ( y = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) -> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 178 |  | eqid |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 179 |  | fvex |  |-  ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) e. _V | 
						
							| 180 | 177 178 179 | fvmpt |  |-  ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 181 | 174 180 | syl |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 182 | 173 | simprd |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) | 
						
							| 183 | 150 | simprd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( A + ( m x. D ) ) ) = G ) | 
						
							| 184 |  | oveq1 |  |-  ( x = ( A + ( m x. D ) ) -> ( x - 1 ) = ( ( A + ( m x. D ) ) - 1 ) ) | 
						
							| 185 | 184 | oveq1d |  |-  ( x = ( A + ( m x. D ) ) -> ( ( x - 1 ) + V ) = ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) | 
						
							| 186 | 185 | oveq2d |  |-  ( x = ( A + ( m x. D ) ) -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) | 
						
							| 187 | 186 | oveq2d |  |-  ( x = ( A + ( m x. D ) ) -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) | 
						
							| 188 | 187 | fveq2d |  |-  ( x = ( A + ( m x. D ) ) -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 189 | 188 | mpteq2dv |  |-  ( x = ( A + ( m x. D ) ) -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) | 
						
							| 190 |  | ovex |  |-  ( 1 ... W ) e. _V | 
						
							| 191 | 190 | mptex |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) e. _V | 
						
							| 192 | 189 5 191 | fvmpt |  |-  ( ( A + ( m x. D ) ) e. ( 1 ... V ) -> ( F ` ( A + ( m x. D ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) | 
						
							| 193 | 151 192 | syl |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( A + ( m x. D ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) | 
						
							| 194 | 183 193 | eqtr3d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) | 
						
							| 195 | 194 | adantlr |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) | 
						
							| 196 | 195 | fveq1d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) ) | 
						
							| 197 | 182 196 | eqtr3d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) ) | 
						
							| 198 | 130 | fveq2d |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 199 | 181 197 198 | 3eqtr4rd |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) | 
						
							| 200 | 176 199 | jca |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 201 |  | eleq1 |  |-  ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) ) | 
						
							| 202 |  | fveqeq2 |  |-  ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) <-> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 203 | 201 202 | anbi12d |  |-  ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) <-> ( ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 204 | 200 203 | syl5ibrcom |  |-  ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 205 | 204 | rexlimdva |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 206 | 87 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) | 
						
							| 207 | 162 206 | nnaddcld |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) | 
						
							| 208 | 65 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. D ) e. NN ) | 
						
							| 209 | 79 208 | nnaddcld |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( W x. D ) ) e. NN ) | 
						
							| 210 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) e. NN /\ ( ( E ` i ) + ( W x. D ) ) e. NN ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) ) | 
						
							| 211 | 161 207 209 210 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) ) | 
						
							| 212 | 4 | ffnd |  |-  ( ph -> H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 213 | 212 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 214 |  | fniniseg |  |-  ( H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) -> ( x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 215 | 213 214 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) | 
						
							| 216 | 205 211 215 | 3imtr4d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) -> x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) ) | 
						
							| 217 | 216 | ssrdv |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) C_ ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 218 |  | ssun1 |  |-  ( 1 ... M ) C_ ( ( 1 ... M ) u. { ( M + 1 ) } ) | 
						
							| 219 |  | fzsuc |  |-  ( M e. ( ZZ>= ` 1 ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) | 
						
							| 220 | 52 219 | syl |  |-  ( ph -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) | 
						
							| 221 | 218 220 | sseqtrrid |  |-  ( ph -> ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) | 
						
							| 222 | 221 | sselda |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 1 ... ( M + 1 ) ) ) | 
						
							| 223 |  | eqeq1 |  |-  ( j = i -> ( j = ( M + 1 ) <-> i = ( M + 1 ) ) ) | 
						
							| 224 |  | fveq2 |  |-  ( j = i -> ( E ` j ) = ( E ` i ) ) | 
						
							| 225 | 223 224 | ifbieq2d |  |-  ( j = i -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) = if ( i = ( M + 1 ) , 0 , ( E ` i ) ) ) | 
						
							| 226 | 225 | oveq1d |  |-  ( j = i -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) | 
						
							| 227 |  | ovex |  |-  ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) e. _V | 
						
							| 228 | 226 18 227 | fvmpt |  |-  ( i e. ( 1 ... ( M + 1 ) ) -> ( P ` i ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) | 
						
							| 229 | 222 228 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) | 
						
							| 230 | 6 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 231 | 230 | ltp1d |  |-  ( ph -> M < ( M + 1 ) ) | 
						
							| 232 |  | peano2re |  |-  ( M e. RR -> ( M + 1 ) e. RR ) | 
						
							| 233 | 230 232 | syl |  |-  ( ph -> ( M + 1 ) e. RR ) | 
						
							| 234 | 230 233 | ltnled |  |-  ( ph -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) | 
						
							| 235 | 231 234 | mpbid |  |-  ( ph -> -. ( M + 1 ) <_ M ) | 
						
							| 236 |  | breq1 |  |-  ( i = ( M + 1 ) -> ( i <_ M <-> ( M + 1 ) <_ M ) ) | 
						
							| 237 | 236 | notbid |  |-  ( i = ( M + 1 ) -> ( -. i <_ M <-> -. ( M + 1 ) <_ M ) ) | 
						
							| 238 | 235 237 | syl5ibrcom |  |-  ( ph -> ( i = ( M + 1 ) -> -. i <_ M ) ) | 
						
							| 239 | 238 | con2d |  |-  ( ph -> ( i <_ M -> -. i = ( M + 1 ) ) ) | 
						
							| 240 |  | elfzle2 |  |-  ( i e. ( 1 ... M ) -> i <_ M ) | 
						
							| 241 | 239 240 | impel |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> -. i = ( M + 1 ) ) | 
						
							| 242 |  | iffalse |  |-  ( -. i = ( M + 1 ) -> if ( i = ( M + 1 ) , 0 , ( E ` i ) ) = ( E ` i ) ) | 
						
							| 243 | 242 | oveq1d |  |-  ( -. i = ( M + 1 ) -> ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) = ( ( E ` i ) + ( W x. D ) ) ) | 
						
							| 244 | 241 243 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) = ( ( E ` i ) + ( W x. D ) ) ) | 
						
							| 245 | 229 244 | eqtrd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) = ( ( E ` i ) + ( W x. D ) ) ) | 
						
							| 246 | 245 | oveq2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( P ` i ) ) = ( T + ( ( E ` i ) + ( W x. D ) ) ) ) | 
						
							| 247 | 47 | nncnd |  |-  ( ph -> T e. CC ) | 
						
							| 248 | 247 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> T e. CC ) | 
						
							| 249 | 101 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. D ) e. CC ) | 
						
							| 250 | 248 80 249 | add12d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( ( E ` i ) + ( W x. D ) ) ) = ( ( E ` i ) + ( T + ( W x. D ) ) ) ) | 
						
							| 251 | 17 | oveq1i |  |-  ( T + ( W x. D ) ) = ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) | 
						
							| 252 | 12 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 253 | 120 109 | subcld |  |-  ( ph -> ( V - D ) e. CC ) | 
						
							| 254 | 113 253 | addcld |  |-  ( ph -> ( A + ( V - D ) ) e. CC ) | 
						
							| 255 |  | ax-1cn |  |-  1 e. CC | 
						
							| 256 |  | subcl |  |-  ( ( ( A + ( V - D ) ) e. CC /\ 1 e. CC ) -> ( ( A + ( V - D ) ) - 1 ) e. CC ) | 
						
							| 257 | 254 255 256 | sylancl |  |-  ( ph -> ( ( A + ( V - D ) ) - 1 ) e. CC ) | 
						
							| 258 | 105 257 | mulcld |  |-  ( ph -> ( W x. ( ( A + ( V - D ) ) - 1 ) ) e. CC ) | 
						
							| 259 | 252 258 101 | addassd |  |-  ( ph -> ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) = ( B + ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) ) | 
						
							| 260 | 105 257 109 | adddid |  |-  ( ph -> ( W x. ( ( ( A + ( V - D ) ) - 1 ) + D ) ) = ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) | 
						
							| 261 | 113 253 109 | addassd |  |-  ( ph -> ( ( A + ( V - D ) ) + D ) = ( A + ( ( V - D ) + D ) ) ) | 
						
							| 262 | 120 109 | npcand |  |-  ( ph -> ( ( V - D ) + D ) = V ) | 
						
							| 263 | 262 | oveq2d |  |-  ( ph -> ( A + ( ( V - D ) + D ) ) = ( A + V ) ) | 
						
							| 264 | 261 263 | eqtrd |  |-  ( ph -> ( ( A + ( V - D ) ) + D ) = ( A + V ) ) | 
						
							| 265 | 264 | oveq1d |  |-  ( ph -> ( ( ( A + ( V - D ) ) + D ) - 1 ) = ( ( A + V ) - 1 ) ) | 
						
							| 266 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 267 | 254 109 266 | addsubd |  |-  ( ph -> ( ( ( A + ( V - D ) ) + D ) - 1 ) = ( ( ( A + ( V - D ) ) - 1 ) + D ) ) | 
						
							| 268 | 113 120 266 | addsubd |  |-  ( ph -> ( ( A + V ) - 1 ) = ( ( A - 1 ) + V ) ) | 
						
							| 269 | 265 267 268 | 3eqtr3d |  |-  ( ph -> ( ( ( A + ( V - D ) ) - 1 ) + D ) = ( ( A - 1 ) + V ) ) | 
						
							| 270 | 269 | oveq2d |  |-  ( ph -> ( W x. ( ( ( A + ( V - D ) ) - 1 ) + D ) ) = ( W x. ( ( A - 1 ) + V ) ) ) | 
						
							| 271 | 260 270 | eqtr3d |  |-  ( ph -> ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) = ( W x. ( ( A - 1 ) + V ) ) ) | 
						
							| 272 | 271 | oveq2d |  |-  ( ph -> ( B + ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 273 | 259 272 | eqtrd |  |-  ( ph -> ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 274 | 251 273 | eqtrid |  |-  ( ph -> ( T + ( W x. D ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 275 | 274 | oveq2d |  |-  ( ph -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 276 | 275 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 277 | 88 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) | 
						
							| 278 | 80 77 277 | addassd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( E ` i ) + B ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 279 | 80 77 | addcomd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + B ) = ( B + ( E ` i ) ) ) | 
						
							| 280 | 279 | oveq1d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( E ` i ) + B ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 281 | 276 278 280 | 3eqtr2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 282 | 246 250 281 | 3eqtrd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( P ` i ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 283 | 282 245 | oveq12d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) ) | 
						
							| 284 |  | cnvimass |  |-  ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ dom G | 
						
							| 285 | 284 7 | fssdm |  |-  ( ph -> ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ ( 1 ... W ) ) | 
						
							| 286 | 285 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ ( 1 ... W ) ) | 
						
							| 287 |  | vdwapid1 |  |-  ( ( K e. NN /\ ( B + ( E ` i ) ) e. NN /\ ( E ` i ) e. NN ) -> ( B + ( E ` i ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) | 
						
							| 288 | 160 162 79 287 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) | 
						
							| 289 | 153 288 | sseldd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 290 | 286 289 | sseldd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( 1 ... W ) ) | 
						
							| 291 |  | fvoveq1 |  |-  ( y = ( B + ( E ` i ) ) -> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 292 |  | eqid |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 293 |  | fvex |  |-  ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) e. _V | 
						
							| 294 | 291 292 293 | fvmpt |  |-  ( ( B + ( E ` i ) ) e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 295 | 290 294 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 296 |  | vdwapid1 |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) | 
						
							| 297 | 25 9 10 296 | syl3anc |  |-  ( ph -> A e. ( A ( AP ` K ) D ) ) | 
						
							| 298 | 11 297 | sseldd |  |-  ( ph -> A e. ( `' F " { G } ) ) | 
						
							| 299 |  | fniniseg |  |-  ( F Fn ( 1 ... V ) -> ( A e. ( `' F " { G } ) <-> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) ) | 
						
							| 300 | 146 299 | syl |  |-  ( ph -> ( A e. ( `' F " { G } ) <-> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) ) | 
						
							| 301 | 298 300 | mpbid |  |-  ( ph -> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) | 
						
							| 302 | 301 | simprd |  |-  ( ph -> ( F ` A ) = G ) | 
						
							| 303 | 301 | simpld |  |-  ( ph -> A e. ( 1 ... V ) ) | 
						
							| 304 |  | oveq1 |  |-  ( x = A -> ( x - 1 ) = ( A - 1 ) ) | 
						
							| 305 | 304 | oveq1d |  |-  ( x = A -> ( ( x - 1 ) + V ) = ( ( A - 1 ) + V ) ) | 
						
							| 306 | 305 | oveq2d |  |-  ( x = A -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( A - 1 ) + V ) ) ) | 
						
							| 307 | 306 | oveq2d |  |-  ( x = A -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 308 | 307 | fveq2d |  |-  ( x = A -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 309 | 308 | mpteq2dv |  |-  ( x = A -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) | 
						
							| 310 | 190 | mptex |  |-  ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) e. _V | 
						
							| 311 | 309 5 310 | fvmpt |  |-  ( A e. ( 1 ... V ) -> ( F ` A ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) | 
						
							| 312 | 303 311 | syl |  |-  ( ph -> ( F ` A ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) | 
						
							| 313 | 302 312 | eqtr3d |  |-  ( ph -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) | 
						
							| 314 | 313 | fveq1d |  |-  ( ph -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) ) | 
						
							| 315 | 314 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) ) | 
						
							| 316 | 282 | fveq2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` ( T + ( P ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 317 | 295 315 316 | 3eqtr4rd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` ( T + ( P ` i ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) | 
						
							| 318 | 317 | sneqd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> { ( H ` ( T + ( P ` i ) ) ) } = { ( G ` ( B + ( E ` i ) ) ) } ) | 
						
							| 319 | 318 | imaeq2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) = ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) | 
						
							| 320 | 217 283 319 | 3sstr4d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) | 
						
							| 321 | 320 | ex |  |-  ( ph -> ( i e. ( 1 ... M ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 322 | 252 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. CC ) | 
						
							| 323 | 88 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) | 
						
							| 324 | 322 323 98 | addassd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) = ( B + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 325 | 127 | oveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) = ( B + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 326 | 324 325 | eqtr4d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) = ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) | 
						
							| 327 | 1 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. NN ) | 
						
							| 328 | 2 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. NN ) | 
						
							| 329 |  | eluzfz1 |  |-  ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) | 
						
							| 330 | 52 329 | syl |  |-  ( ph -> 1 e. ( 1 ... M ) ) | 
						
							| 331 | 330 | ne0d |  |-  ( ph -> ( 1 ... M ) =/= (/) ) | 
						
							| 332 |  | elfzuz3 |  |-  ( ( B + ( E ` i ) ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( B + ( E ` i ) ) ) ) | 
						
							| 333 | 290 332 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> W e. ( ZZ>= ` ( B + ( E ` i ) ) ) ) | 
						
							| 334 | 12 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 335 |  | uzid |  |-  ( B e. ZZ -> B e. ( ZZ>= ` B ) ) | 
						
							| 336 | 334 335 | syl |  |-  ( ph -> B e. ( ZZ>= ` B ) ) | 
						
							| 337 | 336 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> B e. ( ZZ>= ` B ) ) | 
						
							| 338 | 79 | nnnn0d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. NN0 ) | 
						
							| 339 |  | uzaddcl |  |-  ( ( B e. ( ZZ>= ` B ) /\ ( E ` i ) e. NN0 ) -> ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) | 
						
							| 340 | 337 338 339 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) | 
						
							| 341 |  | uztrn |  |-  ( ( W e. ( ZZ>= ` ( B + ( E ` i ) ) ) /\ ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) -> W e. ( ZZ>= ` B ) ) | 
						
							| 342 | 333 340 341 | syl2anc |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> W e. ( ZZ>= ` B ) ) | 
						
							| 343 |  | eluzle |  |-  ( W e. ( ZZ>= ` B ) -> B <_ W ) | 
						
							| 344 | 342 343 | syl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> B <_ W ) | 
						
							| 345 | 344 | ralrimiva |  |-  ( ph -> A. i e. ( 1 ... M ) B <_ W ) | 
						
							| 346 |  | r19.2z |  |-  ( ( ( 1 ... M ) =/= (/) /\ A. i e. ( 1 ... M ) B <_ W ) -> E. i e. ( 1 ... M ) B <_ W ) | 
						
							| 347 | 331 345 346 | syl2anc |  |-  ( ph -> E. i e. ( 1 ... M ) B <_ W ) | 
						
							| 348 |  | idd |  |-  ( i e. ( 1 ... M ) -> ( B <_ W -> B <_ W ) ) | 
						
							| 349 | 348 | rexlimiv |  |-  ( E. i e. ( 1 ... M ) B <_ W -> B <_ W ) | 
						
							| 350 | 347 349 | syl |  |-  ( ph -> B <_ W ) | 
						
							| 351 | 2 | nnzd |  |-  ( ph -> W e. ZZ ) | 
						
							| 352 |  | fznn |  |-  ( W e. ZZ -> ( B e. ( 1 ... W ) <-> ( B e. NN /\ B <_ W ) ) ) | 
						
							| 353 | 351 352 | syl |  |-  ( ph -> ( B e. ( 1 ... W ) <-> ( B e. NN /\ B <_ W ) ) ) | 
						
							| 354 | 12 350 353 | mpbir2and |  |-  ( ph -> B e. ( 1 ... W ) ) | 
						
							| 355 | 354 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. ( 1 ... W ) ) | 
						
							| 356 | 327 328 151 355 | vdwlem3 |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 357 | 326 356 | eqeltrd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) | 
						
							| 358 |  | fvoveq1 |  |-  ( y = B -> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 359 |  | fvex |  |-  ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) e. _V | 
						
							| 360 | 358 178 359 | fvmpt |  |-  ( B e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 361 | 355 360 | syl |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 362 | 194 | fveq1d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` B ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) ) | 
						
							| 363 | 326 | fveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) | 
						
							| 364 | 361 362 363 | 3eqtr4rd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) | 
						
							| 365 | 357 364 | jca |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) | 
						
							| 366 |  | eleq1 |  |-  ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) ) | 
						
							| 367 |  | fveqeq2 |  |-  ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( ( H ` z ) = ( G ` B ) <-> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) | 
						
							| 368 | 366 367 | anbi12d |  |-  ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) <-> ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) ) | 
						
							| 369 | 365 368 | syl5ibrcom |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) | 
						
							| 370 | 369 | rexlimdva |  |-  ( ph -> ( E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) | 
						
							| 371 | 12 87 | nnaddcld |  |-  ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) | 
						
							| 372 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN /\ ( W x. D ) e. NN ) -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 373 | 139 371 65 372 | syl3anc |  |-  ( ph -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) ) | 
						
							| 374 |  | fniniseg |  |-  ( H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) -> ( z e. ( `' H " { ( G ` B ) } ) <-> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) | 
						
							| 375 | 212 374 | syl |  |-  ( ph -> ( z e. ( `' H " { ( G ` B ) } ) <-> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) | 
						
							| 376 | 370 373 375 | 3imtr4d |  |-  ( ph -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) -> z e. ( `' H " { ( G ` B ) } ) ) ) | 
						
							| 377 | 376 | ssrdv |  |-  ( ph -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) C_ ( `' H " { ( G ` B ) } ) ) | 
						
							| 378 | 6 | peano2nnd |  |-  ( ph -> ( M + 1 ) e. NN ) | 
						
							| 379 | 378 51 | eleqtrdi |  |-  ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 380 |  | eluzfz2 |  |-  ( ( M + 1 ) e. ( ZZ>= ` 1 ) -> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) | 
						
							| 381 |  | iftrue |  |-  ( j = ( M + 1 ) -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) = 0 ) | 
						
							| 382 | 381 | oveq1d |  |-  ( j = ( M + 1 ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) = ( 0 + ( W x. D ) ) ) | 
						
							| 383 |  | ovex |  |-  ( 0 + ( W x. D ) ) e. _V | 
						
							| 384 | 382 18 383 | fvmpt |  |-  ( ( M + 1 ) e. ( 1 ... ( M + 1 ) ) -> ( P ` ( M + 1 ) ) = ( 0 + ( W x. D ) ) ) | 
						
							| 385 | 379 380 384 | 3syl |  |-  ( ph -> ( P ` ( M + 1 ) ) = ( 0 + ( W x. D ) ) ) | 
						
							| 386 | 101 | addlidd |  |-  ( ph -> ( 0 + ( W x. D ) ) = ( W x. D ) ) | 
						
							| 387 | 385 386 | eqtrd |  |-  ( ph -> ( P ` ( M + 1 ) ) = ( W x. D ) ) | 
						
							| 388 | 387 | oveq2d |  |-  ( ph -> ( T + ( P ` ( M + 1 ) ) ) = ( T + ( W x. D ) ) ) | 
						
							| 389 | 388 274 | eqtrd |  |-  ( ph -> ( T + ( P ` ( M + 1 ) ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) | 
						
							| 390 | 389 387 | oveq12d |  |-  ( ph -> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) ) | 
						
							| 391 |  | fvoveq1 |  |-  ( y = B -> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 392 |  | fvex |  |-  ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) e. _V | 
						
							| 393 | 391 292 392 | fvmpt |  |-  ( B e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 394 | 354 393 | syl |  |-  ( ph -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 395 | 313 | fveq1d |  |-  ( ph -> ( G ` B ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) ) | 
						
							| 396 | 389 | fveq2d |  |-  ( ph -> ( H ` ( T + ( P ` ( M + 1 ) ) ) ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) | 
						
							| 397 | 394 395 396 | 3eqtr4rd |  |-  ( ph -> ( H ` ( T + ( P ` ( M + 1 ) ) ) ) = ( G ` B ) ) | 
						
							| 398 | 397 | sneqd |  |-  ( ph -> { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } = { ( G ` B ) } ) | 
						
							| 399 | 398 | imaeq2d |  |-  ( ph -> ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) = ( `' H " { ( G ` B ) } ) ) | 
						
							| 400 | 377 390 399 | 3sstr4d |  |-  ( ph -> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) C_ ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) | 
						
							| 401 |  | fveq2 |  |-  ( i = ( M + 1 ) -> ( P ` i ) = ( P ` ( M + 1 ) ) ) | 
						
							| 402 | 401 | oveq2d |  |-  ( i = ( M + 1 ) -> ( T + ( P ` i ) ) = ( T + ( P ` ( M + 1 ) ) ) ) | 
						
							| 403 | 402 401 | oveq12d |  |-  ( i = ( M + 1 ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) = ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) ) | 
						
							| 404 | 402 | fveq2d |  |-  ( i = ( M + 1 ) -> ( H ` ( T + ( P ` i ) ) ) = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) | 
						
							| 405 | 404 | sneqd |  |-  ( i = ( M + 1 ) -> { ( H ` ( T + ( P ` i ) ) ) } = { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) | 
						
							| 406 | 405 | imaeq2d |  |-  ( i = ( M + 1 ) -> ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) | 
						
							| 407 | 403 406 | sseq12d |  |-  ( i = ( M + 1 ) -> ( ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) <-> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) C_ ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) ) | 
						
							| 408 | 400 407 | syl5ibrcom |  |-  ( ph -> ( i = ( M + 1 ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 409 | 321 408 | jaod |  |-  ( ph -> ( ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 410 | 75 409 | sylbid |  |-  ( ph -> ( i e. ( 1 ... ( M + 1 ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 411 | 410 | ralrimiv |  |-  ( ph -> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) | 
						
							| 412 | 411 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) | 
						
							| 413 | 220 | rexeqdv |  |-  ( ph -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) ) ) | 
						
							| 414 |  | rexun |  |-  ( E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) \/ E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) ) ) | 
						
							| 415 | 317 | eqeq2d |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 416 | 415 | rexbidva |  |-  ( ph -> ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) <-> E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) ) ) | 
						
							| 417 |  | ovex |  |-  ( M + 1 ) e. _V | 
						
							| 418 | 404 | eqeq2d |  |-  ( i = ( M + 1 ) -> ( x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) ) | 
						
							| 419 | 417 418 | rexsn |  |-  ( E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) | 
						
							| 420 | 397 | eqeq2d |  |-  ( ph -> ( x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) <-> x = ( G ` B ) ) ) | 
						
							| 421 | 419 420 | bitrid |  |-  ( ph -> ( E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( G ` B ) ) ) | 
						
							| 422 | 416 421 | orbi12d |  |-  ( ph -> ( ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) \/ E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) | 
						
							| 423 | 414 422 | bitrid |  |-  ( ph -> ( E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) | 
						
							| 424 | 413 423 | bitrd |  |-  ( ph -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) | 
						
							| 425 | 424 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) | 
						
							| 426 | 425 | abbidv |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> { x | E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) } = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } ) | 
						
							| 427 |  | eqid |  |-  ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) | 
						
							| 428 | 427 | rnmpt |  |-  ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = { x | E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) } | 
						
							| 429 | 15 | rnmpt |  |-  ran J = { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } | 
						
							| 430 |  | df-sn |  |-  { ( G ` B ) } = { x | x = ( G ` B ) } | 
						
							| 431 | 429 430 | uneq12i |  |-  ( ran J u. { ( G ` B ) } ) = ( { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } u. { x | x = ( G ` B ) } ) | 
						
							| 432 |  | unab |  |-  ( { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } u. { x | x = ( G ` B ) } ) = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } | 
						
							| 433 | 431 432 | eqtri |  |-  ( ran J u. { ( G ` B ) } ) = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } | 
						
							| 434 | 426 428 433 | 3eqtr4g |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = ( ran J u. { ( G ` B ) } ) ) | 
						
							| 435 | 434 | fveq2d |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( # ` ( ran J u. { ( G ` B ) } ) ) ) | 
						
							| 436 |  | fzfi |  |-  ( 1 ... M ) e. Fin | 
						
							| 437 |  | dffn4 |  |-  ( J Fn ( 1 ... M ) <-> J : ( 1 ... M ) -onto-> ran J ) | 
						
							| 438 | 20 437 | mpbi |  |-  J : ( 1 ... M ) -onto-> ran J | 
						
							| 439 |  | fofi |  |-  ( ( ( 1 ... M ) e. Fin /\ J : ( 1 ... M ) -onto-> ran J ) -> ran J e. Fin ) | 
						
							| 440 | 436 438 439 | mp2an |  |-  ran J e. Fin | 
						
							| 441 | 440 | a1i |  |-  ( ph -> ran J e. Fin ) | 
						
							| 442 |  | fvex |  |-  ( G ` B ) e. _V | 
						
							| 443 |  | hashunsng |  |-  ( ( G ` B ) e. _V -> ( ( ran J e. Fin /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) ) | 
						
							| 444 | 442 443 | ax-mp |  |-  ( ( ran J e. Fin /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) | 
						
							| 445 | 441 444 | sylan |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) | 
						
							| 446 | 16 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran J ) = M ) | 
						
							| 447 | 446 | oveq1d |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( ( # ` ran J ) + 1 ) = ( M + 1 ) ) | 
						
							| 448 | 435 445 447 | 3eqtrd |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) | 
						
							| 449 | 412 448 | jca |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) | 
						
							| 450 |  | oveq1 |  |-  ( a = T -> ( a + ( d ` i ) ) = ( T + ( d ` i ) ) ) | 
						
							| 451 | 450 | oveq1d |  |-  ( a = T -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) | 
						
							| 452 |  | fvoveq1 |  |-  ( a = T -> ( H ` ( a + ( d ` i ) ) ) = ( H ` ( T + ( d ` i ) ) ) ) | 
						
							| 453 | 452 | sneqd |  |-  ( a = T -> { ( H ` ( a + ( d ` i ) ) ) } = { ( H ` ( T + ( d ` i ) ) ) } ) | 
						
							| 454 | 453 | imaeq2d |  |-  ( a = T -> ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) | 
						
							| 455 | 451 454 | sseq12d |  |-  ( a = T -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) <-> ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) ) | 
						
							| 456 | 455 | ralbidv |  |-  ( a = T -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) ) | 
						
							| 457 | 452 | mpteq2dv |  |-  ( a = T -> ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) | 
						
							| 458 | 457 | rneqd |  |-  ( a = T -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) | 
						
							| 459 | 458 | fveqeq2d |  |-  ( a = T -> ( ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) <-> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) | 
						
							| 460 | 456 459 | anbi12d |  |-  ( a = T -> ( ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) <-> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) ) | 
						
							| 461 |  | fveq1 |  |-  ( d = P -> ( d ` i ) = ( P ` i ) ) | 
						
							| 462 | 461 | oveq2d |  |-  ( d = P -> ( T + ( d ` i ) ) = ( T + ( P ` i ) ) ) | 
						
							| 463 | 462 461 | oveq12d |  |-  ( d = P -> ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) ) | 
						
							| 464 | 462 | fveq2d |  |-  ( d = P -> ( H ` ( T + ( d ` i ) ) ) = ( H ` ( T + ( P ` i ) ) ) ) | 
						
							| 465 | 464 | sneqd |  |-  ( d = P -> { ( H ` ( T + ( d ` i ) ) ) } = { ( H ` ( T + ( P ` i ) ) ) } ) | 
						
							| 466 | 465 | imaeq2d |  |-  ( d = P -> ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) | 
						
							| 467 | 463 466 | sseq12d |  |-  ( d = P -> ( ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) <-> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 468 | 467 | ralbidv |  |-  ( d = P -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) | 
						
							| 469 | 464 | mpteq2dv |  |-  ( d = P -> ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) | 
						
							| 470 | 469 | rneqd |  |-  ( d = P -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) | 
						
							| 471 | 470 | fveqeq2d |  |-  ( d = P -> ( ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) <-> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) | 
						
							| 472 | 468 471 | anbi12d |  |-  ( d = P -> ( ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) <-> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) ) | 
						
							| 473 | 460 472 | rspc2ev |  |-  ( ( T e. NN /\ P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) /\ ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) | 
						
							| 474 | 48 73 449 473 | syl3anc |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) | 
						
							| 475 |  | ovex |  |-  ( 1 ... ( W x. ( 2 x. V ) ) ) e. _V | 
						
							| 476 | 25 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> K e. NN ) | 
						
							| 477 | 476 | nnnn0d |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> K e. NN0 ) | 
						
							| 478 | 4 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 479 | 6 | adantr |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> M e. NN ) | 
						
							| 480 | 479 | peano2nnd |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( M + 1 ) e. NN ) | 
						
							| 481 |  | eqid |  |-  ( 1 ... ( M + 1 ) ) = ( 1 ... ( M + 1 ) ) | 
						
							| 482 | 475 477 478 480 481 | vdwpc |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H <-> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) ) | 
						
							| 483 | 474 482 | mpbird |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> <. ( M + 1 ) , K >. PolyAP H ) | 
						
							| 484 | 483 | orcd |  |-  ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) | 
						
							| 485 | 46 484 | pm2.61dan |  |-  ( ph -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) |