| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem3.v |
|- ( ph -> V e. NN ) |
| 2 |
|
vdwlem3.w |
|- ( ph -> W e. NN ) |
| 3 |
|
vdwlem4.r |
|- ( ph -> R e. Fin ) |
| 4 |
|
vdwlem4.h |
|- ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
| 5 |
|
vdwlem4.f |
|- F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) |
| 6 |
|
vdwlem7.m |
|- ( ph -> M e. NN ) |
| 7 |
|
vdwlem7.g |
|- ( ph -> G : ( 1 ... W ) --> R ) |
| 8 |
|
vdwlem7.k |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
| 9 |
|
vdwlem7.a |
|- ( ph -> A e. NN ) |
| 10 |
|
vdwlem7.d |
|- ( ph -> D e. NN ) |
| 11 |
|
vdwlem7.s |
|- ( ph -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) |
| 12 |
|
vdwlem6.b |
|- ( ph -> B e. NN ) |
| 13 |
|
vdwlem6.e |
|- ( ph -> E : ( 1 ... M ) --> NN ) |
| 14 |
|
vdwlem6.s |
|- ( ph -> A. i e. ( 1 ... M ) ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 15 |
|
vdwlem6.j |
|- J = ( i e. ( 1 ... M ) |-> ( G ` ( B + ( E ` i ) ) ) ) |
| 16 |
|
vdwlem6.r |
|- ( ph -> ( # ` ran J ) = M ) |
| 17 |
|
vdwlem6.t |
|- T = ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) |
| 18 |
|
vdwlem6.p |
|- P = ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) ) |
| 19 |
|
fvex |
|- ( G ` ( B + ( E ` i ) ) ) e. _V |
| 20 |
19 15
|
fnmpti |
|- J Fn ( 1 ... M ) |
| 21 |
|
fvelrnb |
|- ( J Fn ( 1 ... M ) -> ( ( G ` B ) e. ran J <-> E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) ) ) |
| 22 |
20 21
|
ax-mp |
|- ( ( G ` B ) e. ran J <-> E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) ) |
| 23 |
3
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> R e. Fin ) |
| 24 |
|
eluz2nn |
|- ( K e. ( ZZ>= ` 2 ) -> K e. NN ) |
| 25 |
8 24
|
syl |
|- ( ph -> K e. NN ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> K e. NN ) |
| 27 |
2
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> W e. NN ) |
| 28 |
7
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> G : ( 1 ... W ) --> R ) |
| 29 |
12
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> B e. NN ) |
| 30 |
6
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> M e. NN ) |
| 31 |
13
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> E : ( 1 ... M ) --> NN ) |
| 32 |
14
|
adantr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> A. i e. ( 1 ... M ) ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 33 |
|
simprl |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> m e. ( 1 ... M ) ) |
| 34 |
|
simprr |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( J ` m ) = ( G ` B ) ) |
| 35 |
|
fveq2 |
|- ( i = m -> ( E ` i ) = ( E ` m ) ) |
| 36 |
35
|
oveq2d |
|- ( i = m -> ( B + ( E ` i ) ) = ( B + ( E ` m ) ) ) |
| 37 |
36
|
fveq2d |
|- ( i = m -> ( G ` ( B + ( E ` i ) ) ) = ( G ` ( B + ( E ` m ) ) ) ) |
| 38 |
|
fvex |
|- ( G ` ( B + ( E ` m ) ) ) e. _V |
| 39 |
37 15 38
|
fvmpt |
|- ( m e. ( 1 ... M ) -> ( J ` m ) = ( G ` ( B + ( E ` m ) ) ) ) |
| 40 |
33 39
|
syl |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( J ` m ) = ( G ` ( B + ( E ` m ) ) ) ) |
| 41 |
34 40
|
eqtr3d |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( G ` B ) = ( G ` ( B + ( E ` m ) ) ) ) |
| 42 |
23 26 27 28 29 30 31 32 33 41
|
vdwlem1 |
|- ( ( ph /\ ( m e. ( 1 ... M ) /\ ( J ` m ) = ( G ` B ) ) ) -> ( K + 1 ) MonoAP G ) |
| 43 |
42
|
rexlimdvaa |
|- ( ph -> ( E. m e. ( 1 ... M ) ( J ` m ) = ( G ` B ) -> ( K + 1 ) MonoAP G ) ) |
| 44 |
22 43
|
biimtrid |
|- ( ph -> ( ( G ` B ) e. ran J -> ( K + 1 ) MonoAP G ) ) |
| 45 |
44
|
imp |
|- ( ( ph /\ ( G ` B ) e. ran J ) -> ( K + 1 ) MonoAP G ) |
| 46 |
45
|
olcd |
|- ( ( ph /\ ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
vdwlem5 |
|- ( ph -> T e. NN ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> T e. NN ) |
| 49 |
|
0nn0 |
|- 0 e. NN0 |
| 50 |
49
|
a1i |
|- ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j = ( M + 1 ) ) -> 0 e. NN0 ) |
| 51 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 52 |
6 51
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> M e. ( ZZ>= ` 1 ) ) |
| 54 |
|
elfzp1 |
|- ( M e. ( ZZ>= ` 1 ) -> ( j e. ( 1 ... ( M + 1 ) ) <-> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) ) |
| 55 |
53 54
|
syl |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( j e. ( 1 ... ( M + 1 ) ) <-> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) ) |
| 56 |
55
|
biimpa |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( j e. ( 1 ... M ) \/ j = ( M + 1 ) ) ) |
| 57 |
56
|
ord |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( -. j e. ( 1 ... M ) -> j = ( M + 1 ) ) ) |
| 58 |
57
|
con1d |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( -. j = ( M + 1 ) -> j e. ( 1 ... M ) ) ) |
| 59 |
58
|
imp |
|- ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ -. j = ( M + 1 ) ) -> j e. ( 1 ... M ) ) |
| 60 |
13
|
ad2antrr |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> E : ( 1 ... M ) --> NN ) |
| 61 |
60
|
ffvelcdmda |
|- ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j e. ( 1 ... M ) ) -> ( E ` j ) e. NN ) |
| 62 |
61
|
nnnn0d |
|- ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ j e. ( 1 ... M ) ) -> ( E ` j ) e. NN0 ) |
| 63 |
59 62
|
syldan |
|- ( ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) /\ -. j = ( M + 1 ) ) -> ( E ` j ) e. NN0 ) |
| 64 |
50 63
|
ifclda |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) e. NN0 ) |
| 65 |
2 10
|
nnmulcld |
|- ( ph -> ( W x. D ) e. NN ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( W x. D ) e. NN ) |
| 67 |
|
nn0nnaddcl |
|- ( ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) e. NN0 /\ ( W x. D ) e. NN ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) e. NN ) |
| 68 |
64 66 67
|
syl2anc |
|- ( ( ( ph /\ -. ( G ` B ) e. ran J ) /\ j e. ( 1 ... ( M + 1 ) ) ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) e. NN ) |
| 69 |
68 18
|
fmptd |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> P : ( 1 ... ( M + 1 ) ) --> NN ) |
| 70 |
|
nnex |
|- NN e. _V |
| 71 |
|
ovex |
|- ( 1 ... ( M + 1 ) ) e. _V |
| 72 |
70 71
|
elmap |
|- ( P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) <-> P : ( 1 ... ( M + 1 ) ) --> NN ) |
| 73 |
69 72
|
sylibr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ) |
| 74 |
|
elfzp1 |
|- ( M e. ( ZZ>= ` 1 ) -> ( i e. ( 1 ... ( M + 1 ) ) <-> ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) ) ) |
| 75 |
52 74
|
syl |
|- ( ph -> ( i e. ( 1 ... ( M + 1 ) ) <-> ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) ) ) |
| 76 |
12
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> B e. NN ) |
| 77 |
76
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> B e. CC ) |
| 78 |
77
|
adantr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. CC ) |
| 79 |
13
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. NN ) |
| 80 |
79
|
nncnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. CC ) |
| 81 |
80
|
adantr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( E ` i ) e. CC ) |
| 82 |
78 81
|
addcld |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( E ` i ) ) e. CC ) |
| 83 |
|
nnm1nn0 |
|- ( A e. NN -> ( A - 1 ) e. NN0 ) |
| 84 |
9 83
|
syl |
|- ( ph -> ( A - 1 ) e. NN0 ) |
| 85 |
|
nn0nnaddcl |
|- ( ( ( A - 1 ) e. NN0 /\ V e. NN ) -> ( ( A - 1 ) + V ) e. NN ) |
| 86 |
84 1 85
|
syl2anc |
|- ( ph -> ( ( A - 1 ) + V ) e. NN ) |
| 87 |
2 86
|
nnmulcld |
|- ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) |
| 88 |
87
|
nncnd |
|- ( ph -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) |
| 89 |
88
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) |
| 90 |
|
elfznn0 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) |
| 91 |
90
|
adantl |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. NN0 ) |
| 92 |
91
|
nn0cnd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) |
| 93 |
92
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> m e. CC ) |
| 94 |
93 81
|
mulcld |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( E ` i ) ) e. CC ) |
| 95 |
65
|
nnnn0d |
|- ( ph -> ( W x. D ) e. NN0 ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. D ) e. NN0 ) |
| 97 |
91 96
|
nn0mulcld |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. NN0 ) |
| 98 |
97
|
nn0cnd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. CC ) |
| 99 |
98
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) e. CC ) |
| 100 |
82 89 94 99
|
add4d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 101 |
65
|
nncnd |
|- ( ph -> ( W x. D ) e. CC ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. D ) e. CC ) |
| 103 |
93 81 102
|
adddid |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( ( E ` i ) + ( W x. D ) ) ) = ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) |
| 104 |
103
|
oveq2d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( ( m x. ( E ` i ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 105 |
2
|
nncnd |
|- ( ph -> W e. CC ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. CC ) |
| 107 |
86
|
nncnd |
|- ( ph -> ( ( A - 1 ) + V ) e. CC ) |
| 108 |
107
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A - 1 ) + V ) e. CC ) |
| 109 |
10
|
nncnd |
|- ( ph -> D e. CC ) |
| 110 |
109
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> D e. CC ) |
| 111 |
92 110
|
mulcld |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) |
| 112 |
106 108 111
|
adddid |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( W x. ( m x. D ) ) ) ) |
| 113 |
9
|
nncnd |
|- ( ph -> A e. CC ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) |
| 115 |
|
1cnd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> 1 e. CC ) |
| 116 |
114 111 115
|
addsubd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) - 1 ) = ( ( A - 1 ) + ( m x. D ) ) ) |
| 117 |
116
|
oveq1d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + ( m x. D ) ) - 1 ) + V ) = ( ( ( A - 1 ) + ( m x. D ) ) + V ) ) |
| 118 |
84
|
nn0cnd |
|- ( ph -> ( A - 1 ) e. CC ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A - 1 ) e. CC ) |
| 120 |
1
|
nncnd |
|- ( ph -> V e. CC ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. CC ) |
| 122 |
119 111 121
|
add32d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A - 1 ) + ( m x. D ) ) + V ) = ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) |
| 123 |
117 122
|
eqtrd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + ( m x. D ) ) - 1 ) + V ) = ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) |
| 124 |
123
|
oveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( W x. ( ( ( A - 1 ) + V ) + ( m x. D ) ) ) ) |
| 125 |
92 106 110
|
mul12d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. ( W x. D ) ) = ( W x. ( m x. D ) ) ) |
| 126 |
125
|
oveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( W x. ( m x. D ) ) ) ) |
| 127 |
112 124 126
|
3eqtr4d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) |
| 128 |
127
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) = ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) |
| 129 |
128
|
oveq2d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 130 |
100 104 129
|
3eqtr4d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) = ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) |
| 131 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. NN ) |
| 132 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. NN ) |
| 133 |
11
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) |
| 134 |
|
eqid |
|- ( A + ( m x. D ) ) = ( A + ( m x. D ) ) |
| 135 |
|
oveq1 |
|- ( n = m -> ( n x. D ) = ( m x. D ) ) |
| 136 |
135
|
oveq2d |
|- ( n = m -> ( A + ( n x. D ) ) = ( A + ( m x. D ) ) ) |
| 137 |
136
|
rspceeqv |
|- ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( A + ( m x. D ) ) = ( A + ( m x. D ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) |
| 138 |
134 137
|
mpan2 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) |
| 139 |
25
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
| 140 |
|
vdwapval |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
| 141 |
139 9 10 140
|
syl3anc |
|- ( ph -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
| 142 |
141
|
biimpar |
|- ( ( ph /\ E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) |
| 143 |
138 142
|
sylan2 |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) |
| 144 |
133 143
|
sseldd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( `' F " { G } ) ) |
| 145 |
1 2 3 4 5
|
vdwlem4 |
|- ( ph -> F : ( 1 ... V ) --> ( R ^m ( 1 ... W ) ) ) |
| 146 |
145
|
ffnd |
|- ( ph -> F Fn ( 1 ... V ) ) |
| 147 |
|
fniniseg |
|- ( F Fn ( 1 ... V ) -> ( ( A + ( m x. D ) ) e. ( `' F " { G } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) ) |
| 148 |
146 147
|
syl |
|- ( ph -> ( ( A + ( m x. D ) ) e. ( `' F " { G } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) ) |
| 149 |
148
|
biimpa |
|- ( ( ph /\ ( A + ( m x. D ) ) e. ( `' F " { G } ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) |
| 150 |
144 149
|
syldan |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... V ) /\ ( F ` ( A + ( m x. D ) ) ) = G ) ) |
| 151 |
150
|
simpld |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... V ) ) |
| 152 |
151
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... V ) ) |
| 153 |
14
|
r19.21bi |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 154 |
153
|
adantr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) C_ ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 155 |
|
eqid |
|- ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) |
| 156 |
|
oveq1 |
|- ( n = m -> ( n x. ( E ` i ) ) = ( m x. ( E ` i ) ) ) |
| 157 |
156
|
oveq2d |
|- ( n = m -> ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) |
| 158 |
157
|
rspceeqv |
|- ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) |
| 159 |
155 158
|
mpan2 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) |
| 160 |
25
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN ) |
| 161 |
160
|
nnnn0d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> K e. NN0 ) |
| 162 |
76 79
|
nnaddcld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. NN ) |
| 163 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( B + ( E ` i ) ) e. NN /\ ( E ` i ) e. NN ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) ) |
| 164 |
161 162 79 163
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) ) |
| 165 |
164
|
biimpar |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ E. n e. ( 0 ... ( K - 1 ) ) ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) = ( ( B + ( E ` i ) ) + ( n x. ( E ` i ) ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) |
| 166 |
159 165
|
sylan2 |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) |
| 167 |
154 166
|
sseldd |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 168 |
7
|
ffnd |
|- ( ph -> G Fn ( 1 ... W ) ) |
| 169 |
168
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> G Fn ( 1 ... W ) ) |
| 170 |
|
fniniseg |
|- ( G Fn ( 1 ... W ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 171 |
169 170
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 172 |
171
|
biimpa |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 173 |
167 172
|
syldan |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) /\ ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 174 |
173
|
simpld |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) ) |
| 175 |
131 132 152 174
|
vdwlem3 |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 176 |
130 175
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 177 |
|
fvoveq1 |
|- ( y = ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) -> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 178 |
|
eqid |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 179 |
|
fvex |
|- ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) e. _V |
| 180 |
177 178 179
|
fvmpt |
|- ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 181 |
174 180
|
syl |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 182 |
173
|
simprd |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) |
| 183 |
150
|
simprd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( A + ( m x. D ) ) ) = G ) |
| 184 |
|
oveq1 |
|- ( x = ( A + ( m x. D ) ) -> ( x - 1 ) = ( ( A + ( m x. D ) ) - 1 ) ) |
| 185 |
184
|
oveq1d |
|- ( x = ( A + ( m x. D ) ) -> ( ( x - 1 ) + V ) = ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) |
| 186 |
185
|
oveq2d |
|- ( x = ( A + ( m x. D ) ) -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) |
| 187 |
186
|
oveq2d |
|- ( x = ( A + ( m x. D ) ) -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) |
| 188 |
187
|
fveq2d |
|- ( x = ( A + ( m x. D ) ) -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 189 |
188
|
mpteq2dv |
|- ( x = ( A + ( m x. D ) ) -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) |
| 190 |
|
ovex |
|- ( 1 ... W ) e. _V |
| 191 |
190
|
mptex |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) e. _V |
| 192 |
189 5 191
|
fvmpt |
|- ( ( A + ( m x. D ) ) e. ( 1 ... V ) -> ( F ` ( A + ( m x. D ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) |
| 193 |
151 192
|
syl |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( A + ( m x. D ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) |
| 194 |
183 193
|
eqtr3d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) |
| 195 |
194
|
adantlr |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ) |
| 196 |
195
|
fveq1d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) ) |
| 197 |
182 196
|
eqtr3d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) ) ) |
| 198 |
130
|
fveq2d |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( H ` ( ( ( B + ( E ` i ) ) + ( m x. ( E ` i ) ) ) + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 199 |
181 197 198
|
3eqtr4rd |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) |
| 200 |
176 199
|
jca |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 201 |
|
eleq1 |
|- ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) ) |
| 202 |
|
fveqeq2 |
|- ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) <-> ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 203 |
201 202
|
anbi12d |
|- ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) <-> ( ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 204 |
200 203
|
syl5ibrcom |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 205 |
204
|
rexlimdva |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) -> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 206 |
87
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. NN ) |
| 207 |
162 206
|
nnaddcld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) |
| 208 |
65
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. D ) e. NN ) |
| 209 |
79 208
|
nnaddcld |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( W x. D ) ) e. NN ) |
| 210 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) e. NN /\ ( ( E ` i ) + ( W x. D ) ) e. NN ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) ) |
| 211 |
161 207 209 210
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( ( E ` i ) + ( W x. D ) ) ) ) ) ) |
| 212 |
4
|
ffnd |
|- ( ph -> H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 213 |
212
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 214 |
|
fniniseg |
|- ( H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) -> ( x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 215 |
213 214
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) <-> ( x e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` x ) = ( G ` ( B + ( E ` i ) ) ) ) ) ) |
| 216 |
205 211 215
|
3imtr4d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( x e. ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) -> x e. ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) ) |
| 217 |
216
|
ssrdv |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) C_ ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 218 |
|
ssun1 |
|- ( 1 ... M ) C_ ( ( 1 ... M ) u. { ( M + 1 ) } ) |
| 219 |
|
fzsuc |
|- ( M e. ( ZZ>= ` 1 ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
| 220 |
52 219
|
syl |
|- ( ph -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
| 221 |
218 220
|
sseqtrrid |
|- ( ph -> ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) |
| 222 |
221
|
sselda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 1 ... ( M + 1 ) ) ) |
| 223 |
|
eqeq1 |
|- ( j = i -> ( j = ( M + 1 ) <-> i = ( M + 1 ) ) ) |
| 224 |
|
fveq2 |
|- ( j = i -> ( E ` j ) = ( E ` i ) ) |
| 225 |
223 224
|
ifbieq2d |
|- ( j = i -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) = if ( i = ( M + 1 ) , 0 , ( E ` i ) ) ) |
| 226 |
225
|
oveq1d |
|- ( j = i -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) |
| 227 |
|
ovex |
|- ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) e. _V |
| 228 |
226 18 227
|
fvmpt |
|- ( i e. ( 1 ... ( M + 1 ) ) -> ( P ` i ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) |
| 229 |
222 228
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) = ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) ) |
| 230 |
6
|
nnred |
|- ( ph -> M e. RR ) |
| 231 |
230
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
| 232 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
| 233 |
230 232
|
syl |
|- ( ph -> ( M + 1 ) e. RR ) |
| 234 |
230 233
|
ltnled |
|- ( ph -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
| 235 |
231 234
|
mpbid |
|- ( ph -> -. ( M + 1 ) <_ M ) |
| 236 |
|
breq1 |
|- ( i = ( M + 1 ) -> ( i <_ M <-> ( M + 1 ) <_ M ) ) |
| 237 |
236
|
notbid |
|- ( i = ( M + 1 ) -> ( -. i <_ M <-> -. ( M + 1 ) <_ M ) ) |
| 238 |
235 237
|
syl5ibrcom |
|- ( ph -> ( i = ( M + 1 ) -> -. i <_ M ) ) |
| 239 |
238
|
con2d |
|- ( ph -> ( i <_ M -> -. i = ( M + 1 ) ) ) |
| 240 |
|
elfzle2 |
|- ( i e. ( 1 ... M ) -> i <_ M ) |
| 241 |
239 240
|
impel |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> -. i = ( M + 1 ) ) |
| 242 |
|
iffalse |
|- ( -. i = ( M + 1 ) -> if ( i = ( M + 1 ) , 0 , ( E ` i ) ) = ( E ` i ) ) |
| 243 |
242
|
oveq1d |
|- ( -. i = ( M + 1 ) -> ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) = ( ( E ` i ) + ( W x. D ) ) ) |
| 244 |
241 243
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( if ( i = ( M + 1 ) , 0 , ( E ` i ) ) + ( W x. D ) ) = ( ( E ` i ) + ( W x. D ) ) ) |
| 245 |
229 244
|
eqtrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( P ` i ) = ( ( E ` i ) + ( W x. D ) ) ) |
| 246 |
245
|
oveq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( P ` i ) ) = ( T + ( ( E ` i ) + ( W x. D ) ) ) ) |
| 247 |
47
|
nncnd |
|- ( ph -> T e. CC ) |
| 248 |
247
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> T e. CC ) |
| 249 |
101
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. D ) e. CC ) |
| 250 |
248 80 249
|
add12d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( ( E ` i ) + ( W x. D ) ) ) = ( ( E ` i ) + ( T + ( W x. D ) ) ) ) |
| 251 |
17
|
oveq1i |
|- ( T + ( W x. D ) ) = ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) |
| 252 |
12
|
nncnd |
|- ( ph -> B e. CC ) |
| 253 |
120 109
|
subcld |
|- ( ph -> ( V - D ) e. CC ) |
| 254 |
113 253
|
addcld |
|- ( ph -> ( A + ( V - D ) ) e. CC ) |
| 255 |
|
ax-1cn |
|- 1 e. CC |
| 256 |
|
subcl |
|- ( ( ( A + ( V - D ) ) e. CC /\ 1 e. CC ) -> ( ( A + ( V - D ) ) - 1 ) e. CC ) |
| 257 |
254 255 256
|
sylancl |
|- ( ph -> ( ( A + ( V - D ) ) - 1 ) e. CC ) |
| 258 |
105 257
|
mulcld |
|- ( ph -> ( W x. ( ( A + ( V - D ) ) - 1 ) ) e. CC ) |
| 259 |
252 258 101
|
addassd |
|- ( ph -> ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) = ( B + ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) ) |
| 260 |
105 257 109
|
adddid |
|- ( ph -> ( W x. ( ( ( A + ( V - D ) ) - 1 ) + D ) ) = ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) |
| 261 |
113 253 109
|
addassd |
|- ( ph -> ( ( A + ( V - D ) ) + D ) = ( A + ( ( V - D ) + D ) ) ) |
| 262 |
120 109
|
npcand |
|- ( ph -> ( ( V - D ) + D ) = V ) |
| 263 |
262
|
oveq2d |
|- ( ph -> ( A + ( ( V - D ) + D ) ) = ( A + V ) ) |
| 264 |
261 263
|
eqtrd |
|- ( ph -> ( ( A + ( V - D ) ) + D ) = ( A + V ) ) |
| 265 |
264
|
oveq1d |
|- ( ph -> ( ( ( A + ( V - D ) ) + D ) - 1 ) = ( ( A + V ) - 1 ) ) |
| 266 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 267 |
254 109 266
|
addsubd |
|- ( ph -> ( ( ( A + ( V - D ) ) + D ) - 1 ) = ( ( ( A + ( V - D ) ) - 1 ) + D ) ) |
| 268 |
113 120 266
|
addsubd |
|- ( ph -> ( ( A + V ) - 1 ) = ( ( A - 1 ) + V ) ) |
| 269 |
265 267 268
|
3eqtr3d |
|- ( ph -> ( ( ( A + ( V - D ) ) - 1 ) + D ) = ( ( A - 1 ) + V ) ) |
| 270 |
269
|
oveq2d |
|- ( ph -> ( W x. ( ( ( A + ( V - D ) ) - 1 ) + D ) ) = ( W x. ( ( A - 1 ) + V ) ) ) |
| 271 |
260 270
|
eqtr3d |
|- ( ph -> ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) = ( W x. ( ( A - 1 ) + V ) ) ) |
| 272 |
271
|
oveq2d |
|- ( ph -> ( B + ( ( W x. ( ( A + ( V - D ) ) - 1 ) ) + ( W x. D ) ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 273 |
259 272
|
eqtrd |
|- ( ph -> ( ( B + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) + ( W x. D ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 274 |
251 273
|
eqtrid |
|- ( ph -> ( T + ( W x. D ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 275 |
274
|
oveq2d |
|- ( ph -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 276 |
275
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 277 |
88
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) |
| 278 |
80 77 277
|
addassd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( E ` i ) + B ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( ( E ` i ) + ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 279 |
80 77
|
addcomd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + B ) = ( B + ( E ` i ) ) ) |
| 280 |
279
|
oveq1d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( E ` i ) + B ) + ( W x. ( ( A - 1 ) + V ) ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 281 |
276 278 280
|
3eqtr2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( E ` i ) + ( T + ( W x. D ) ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 282 |
246 250 281
|
3eqtrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( T + ( P ` i ) ) = ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 283 |
282 245
|
oveq12d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) = ( ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( ( E ` i ) + ( W x. D ) ) ) ) |
| 284 |
|
cnvimass |
|- ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ dom G |
| 285 |
284 7
|
fssdm |
|- ( ph -> ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ ( 1 ... W ) ) |
| 286 |
285
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) C_ ( 1 ... W ) ) |
| 287 |
|
vdwapid1 |
|- ( ( K e. NN /\ ( B + ( E ` i ) ) e. NN /\ ( E ` i ) e. NN ) -> ( B + ( E ` i ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) |
| 288 |
160 162 79 287
|
syl3anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( ( B + ( E ` i ) ) ( AP ` K ) ( E ` i ) ) ) |
| 289 |
153 288
|
sseldd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( `' G " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 290 |
286 289
|
sseldd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( 1 ... W ) ) |
| 291 |
|
fvoveq1 |
|- ( y = ( B + ( E ` i ) ) -> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 292 |
|
eqid |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 293 |
|
fvex |
|- ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) e. _V |
| 294 |
291 292 293
|
fvmpt |
|- ( ( B + ( E ` i ) ) e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 295 |
290 294
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 296 |
|
vdwapid1 |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) |
| 297 |
25 9 10 296
|
syl3anc |
|- ( ph -> A e. ( A ( AP ` K ) D ) ) |
| 298 |
11 297
|
sseldd |
|- ( ph -> A e. ( `' F " { G } ) ) |
| 299 |
|
fniniseg |
|- ( F Fn ( 1 ... V ) -> ( A e. ( `' F " { G } ) <-> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) ) |
| 300 |
146 299
|
syl |
|- ( ph -> ( A e. ( `' F " { G } ) <-> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) ) |
| 301 |
298 300
|
mpbid |
|- ( ph -> ( A e. ( 1 ... V ) /\ ( F ` A ) = G ) ) |
| 302 |
301
|
simprd |
|- ( ph -> ( F ` A ) = G ) |
| 303 |
301
|
simpld |
|- ( ph -> A e. ( 1 ... V ) ) |
| 304 |
|
oveq1 |
|- ( x = A -> ( x - 1 ) = ( A - 1 ) ) |
| 305 |
304
|
oveq1d |
|- ( x = A -> ( ( x - 1 ) + V ) = ( ( A - 1 ) + V ) ) |
| 306 |
305
|
oveq2d |
|- ( x = A -> ( W x. ( ( x - 1 ) + V ) ) = ( W x. ( ( A - 1 ) + V ) ) ) |
| 307 |
306
|
oveq2d |
|- ( x = A -> ( y + ( W x. ( ( x - 1 ) + V ) ) ) = ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 308 |
307
|
fveq2d |
|- ( x = A -> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) = ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 309 |
308
|
mpteq2dv |
|- ( x = A -> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) |
| 310 |
190
|
mptex |
|- ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) e. _V |
| 311 |
309 5 310
|
fvmpt |
|- ( A e. ( 1 ... V ) -> ( F ` A ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) |
| 312 |
303 311
|
syl |
|- ( ph -> ( F ` A ) = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) |
| 313 |
302 312
|
eqtr3d |
|- ( ph -> G = ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ) |
| 314 |
313
|
fveq1d |
|- ( ph -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) ) |
| 315 |
314
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( B + ( E ` i ) ) ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` ( B + ( E ` i ) ) ) ) |
| 316 |
282
|
fveq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` ( T + ( P ` i ) ) ) = ( H ` ( ( B + ( E ` i ) ) + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 317 |
295 315 316
|
3eqtr4rd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` ( T + ( P ` i ) ) ) = ( G ` ( B + ( E ` i ) ) ) ) |
| 318 |
317
|
sneqd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> { ( H ` ( T + ( P ` i ) ) ) } = { ( G ` ( B + ( E ` i ) ) ) } ) |
| 319 |
318
|
imaeq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) = ( `' H " { ( G ` ( B + ( E ` i ) ) ) } ) ) |
| 320 |
217 283 319
|
3sstr4d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) |
| 321 |
320
|
ex |
|- ( ph -> ( i e. ( 1 ... M ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 322 |
252
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. CC ) |
| 323 |
88
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W x. ( ( A - 1 ) + V ) ) e. CC ) |
| 324 |
322 323 98
|
addassd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) = ( B + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 325 |
127
|
oveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) = ( B + ( ( W x. ( ( A - 1 ) + V ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 326 |
324 325
|
eqtr4d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) = ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) |
| 327 |
1
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> V e. NN ) |
| 328 |
2
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. NN ) |
| 329 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
| 330 |
52 329
|
syl |
|- ( ph -> 1 e. ( 1 ... M ) ) |
| 331 |
330
|
ne0d |
|- ( ph -> ( 1 ... M ) =/= (/) ) |
| 332 |
|
elfzuz3 |
|- ( ( B + ( E ` i ) ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( B + ( E ` i ) ) ) ) |
| 333 |
290 332
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> W e. ( ZZ>= ` ( B + ( E ` i ) ) ) ) |
| 334 |
12
|
nnzd |
|- ( ph -> B e. ZZ ) |
| 335 |
|
uzid |
|- ( B e. ZZ -> B e. ( ZZ>= ` B ) ) |
| 336 |
334 335
|
syl |
|- ( ph -> B e. ( ZZ>= ` B ) ) |
| 337 |
336
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> B e. ( ZZ>= ` B ) ) |
| 338 |
79
|
nnnn0d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( E ` i ) e. NN0 ) |
| 339 |
|
uzaddcl |
|- ( ( B e. ( ZZ>= ` B ) /\ ( E ` i ) e. NN0 ) -> ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) |
| 340 |
337 338 339
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) |
| 341 |
|
uztrn |
|- ( ( W e. ( ZZ>= ` ( B + ( E ` i ) ) ) /\ ( B + ( E ` i ) ) e. ( ZZ>= ` B ) ) -> W e. ( ZZ>= ` B ) ) |
| 342 |
333 340 341
|
syl2anc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> W e. ( ZZ>= ` B ) ) |
| 343 |
|
eluzle |
|- ( W e. ( ZZ>= ` B ) -> B <_ W ) |
| 344 |
342 343
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> B <_ W ) |
| 345 |
344
|
ralrimiva |
|- ( ph -> A. i e. ( 1 ... M ) B <_ W ) |
| 346 |
|
r19.2z |
|- ( ( ( 1 ... M ) =/= (/) /\ A. i e. ( 1 ... M ) B <_ W ) -> E. i e. ( 1 ... M ) B <_ W ) |
| 347 |
331 345 346
|
syl2anc |
|- ( ph -> E. i e. ( 1 ... M ) B <_ W ) |
| 348 |
|
idd |
|- ( i e. ( 1 ... M ) -> ( B <_ W -> B <_ W ) ) |
| 349 |
348
|
rexlimiv |
|- ( E. i e. ( 1 ... M ) B <_ W -> B <_ W ) |
| 350 |
347 349
|
syl |
|- ( ph -> B <_ W ) |
| 351 |
2
|
nnzd |
|- ( ph -> W e. ZZ ) |
| 352 |
|
fznn |
|- ( W e. ZZ -> ( B e. ( 1 ... W ) <-> ( B e. NN /\ B <_ W ) ) ) |
| 353 |
351 352
|
syl |
|- ( ph -> ( B e. ( 1 ... W ) <-> ( B e. NN /\ B <_ W ) ) ) |
| 354 |
12 350 353
|
mpbir2and |
|- ( ph -> B e. ( 1 ... W ) ) |
| 355 |
354
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> B e. ( 1 ... W ) ) |
| 356 |
327 328 151 355
|
vdwlem3 |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 357 |
326 356
|
eqeltrd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) |
| 358 |
|
fvoveq1 |
|- ( y = B -> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 359 |
|
fvex |
|- ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) e. _V |
| 360 |
358 178 359
|
fvmpt |
|- ( B e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 361 |
355 360
|
syl |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 362 |
194
|
fveq1d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` B ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) ` B ) ) |
| 363 |
326
|
fveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( H ` ( B + ( W x. ( ( ( A + ( m x. D ) ) - 1 ) + V ) ) ) ) ) |
| 364 |
361 362 363
|
3eqtr4rd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) |
| 365 |
357 364
|
jca |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) |
| 366 |
|
eleq1 |
|- ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) <-> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) ) ) |
| 367 |
|
fveqeq2 |
|- ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( ( H ` z ) = ( G ` B ) <-> ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) |
| 368 |
366 367
|
anbi12d |
|- ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) <-> ( ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) = ( G ` B ) ) ) ) |
| 369 |
365 368
|
syl5ibrcom |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) |
| 370 |
369
|
rexlimdva |
|- ( ph -> ( E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) -> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) |
| 371 |
12 87
|
nnaddcld |
|- ( ph -> ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN ) |
| 372 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( B + ( W x. ( ( A - 1 ) + V ) ) ) e. NN /\ ( W x. D ) e. NN ) -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 373 |
139 371 65 372
|
syl3anc |
|- ( ph -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) <-> E. m e. ( 0 ... ( K - 1 ) ) z = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) + ( m x. ( W x. D ) ) ) ) ) |
| 374 |
|
fniniseg |
|- ( H Fn ( 1 ... ( W x. ( 2 x. V ) ) ) -> ( z e. ( `' H " { ( G ` B ) } ) <-> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) |
| 375 |
212 374
|
syl |
|- ( ph -> ( z e. ( `' H " { ( G ` B ) } ) <-> ( z e. ( 1 ... ( W x. ( 2 x. V ) ) ) /\ ( H ` z ) = ( G ` B ) ) ) ) |
| 376 |
370 373 375
|
3imtr4d |
|- ( ph -> ( z e. ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) -> z e. ( `' H " { ( G ` B ) } ) ) ) |
| 377 |
376
|
ssrdv |
|- ( ph -> ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) C_ ( `' H " { ( G ` B ) } ) ) |
| 378 |
6
|
peano2nnd |
|- ( ph -> ( M + 1 ) e. NN ) |
| 379 |
378 51
|
eleqtrdi |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
| 380 |
|
eluzfz2 |
|- ( ( M + 1 ) e. ( ZZ>= ` 1 ) -> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) |
| 381 |
|
iftrue |
|- ( j = ( M + 1 ) -> if ( j = ( M + 1 ) , 0 , ( E ` j ) ) = 0 ) |
| 382 |
381
|
oveq1d |
|- ( j = ( M + 1 ) -> ( if ( j = ( M + 1 ) , 0 , ( E ` j ) ) + ( W x. D ) ) = ( 0 + ( W x. D ) ) ) |
| 383 |
|
ovex |
|- ( 0 + ( W x. D ) ) e. _V |
| 384 |
382 18 383
|
fvmpt |
|- ( ( M + 1 ) e. ( 1 ... ( M + 1 ) ) -> ( P ` ( M + 1 ) ) = ( 0 + ( W x. D ) ) ) |
| 385 |
379 380 384
|
3syl |
|- ( ph -> ( P ` ( M + 1 ) ) = ( 0 + ( W x. D ) ) ) |
| 386 |
101
|
addlidd |
|- ( ph -> ( 0 + ( W x. D ) ) = ( W x. D ) ) |
| 387 |
385 386
|
eqtrd |
|- ( ph -> ( P ` ( M + 1 ) ) = ( W x. D ) ) |
| 388 |
387
|
oveq2d |
|- ( ph -> ( T + ( P ` ( M + 1 ) ) ) = ( T + ( W x. D ) ) ) |
| 389 |
388 274
|
eqtrd |
|- ( ph -> ( T + ( P ` ( M + 1 ) ) ) = ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) |
| 390 |
389 387
|
oveq12d |
|- ( ph -> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) = ( ( B + ( W x. ( ( A - 1 ) + V ) ) ) ( AP ` K ) ( W x. D ) ) ) |
| 391 |
|
fvoveq1 |
|- ( y = B -> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 392 |
|
fvex |
|- ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) e. _V |
| 393 |
391 292 392
|
fvmpt |
|- ( B e. ( 1 ... W ) -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 394 |
354 393
|
syl |
|- ( ph -> ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 395 |
313
|
fveq1d |
|- ( ph -> ( G ` B ) = ( ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( A - 1 ) + V ) ) ) ) ) ` B ) ) |
| 396 |
389
|
fveq2d |
|- ( ph -> ( H ` ( T + ( P ` ( M + 1 ) ) ) ) = ( H ` ( B + ( W x. ( ( A - 1 ) + V ) ) ) ) ) |
| 397 |
394 395 396
|
3eqtr4rd |
|- ( ph -> ( H ` ( T + ( P ` ( M + 1 ) ) ) ) = ( G ` B ) ) |
| 398 |
397
|
sneqd |
|- ( ph -> { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } = { ( G ` B ) } ) |
| 399 |
398
|
imaeq2d |
|- ( ph -> ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) = ( `' H " { ( G ` B ) } ) ) |
| 400 |
377 390 399
|
3sstr4d |
|- ( ph -> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) C_ ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) |
| 401 |
|
fveq2 |
|- ( i = ( M + 1 ) -> ( P ` i ) = ( P ` ( M + 1 ) ) ) |
| 402 |
401
|
oveq2d |
|- ( i = ( M + 1 ) -> ( T + ( P ` i ) ) = ( T + ( P ` ( M + 1 ) ) ) ) |
| 403 |
402 401
|
oveq12d |
|- ( i = ( M + 1 ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) = ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) ) |
| 404 |
402
|
fveq2d |
|- ( i = ( M + 1 ) -> ( H ` ( T + ( P ` i ) ) ) = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) |
| 405 |
404
|
sneqd |
|- ( i = ( M + 1 ) -> { ( H ` ( T + ( P ` i ) ) ) } = { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) |
| 406 |
405
|
imaeq2d |
|- ( i = ( M + 1 ) -> ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) |
| 407 |
403 406
|
sseq12d |
|- ( i = ( M + 1 ) -> ( ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) <-> ( ( T + ( P ` ( M + 1 ) ) ) ( AP ` K ) ( P ` ( M + 1 ) ) ) C_ ( `' H " { ( H ` ( T + ( P ` ( M + 1 ) ) ) ) } ) ) ) |
| 408 |
400 407
|
syl5ibrcom |
|- ( ph -> ( i = ( M + 1 ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 409 |
321 408
|
jaod |
|- ( ph -> ( ( i e. ( 1 ... M ) \/ i = ( M + 1 ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 410 |
75 409
|
sylbid |
|- ( ph -> ( i e. ( 1 ... ( M + 1 ) ) -> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 411 |
410
|
ralrimiv |
|- ( ph -> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) |
| 412 |
411
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) |
| 413 |
220
|
rexeqdv |
|- ( ph -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) ) ) |
| 414 |
|
rexun |
|- ( E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) \/ E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) ) ) |
| 415 |
317
|
eqeq2d |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 416 |
415
|
rexbidva |
|- ( ph -> ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) <-> E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) ) ) |
| 417 |
|
ovex |
|- ( M + 1 ) e. _V |
| 418 |
404
|
eqeq2d |
|- ( i = ( M + 1 ) -> ( x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) ) |
| 419 |
417 418
|
rexsn |
|- ( E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) ) |
| 420 |
397
|
eqeq2d |
|- ( ph -> ( x = ( H ` ( T + ( P ` ( M + 1 ) ) ) ) <-> x = ( G ` B ) ) ) |
| 421 |
419 420
|
bitrid |
|- ( ph -> ( E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) <-> x = ( G ` B ) ) ) |
| 422 |
416 421
|
orbi12d |
|- ( ph -> ( ( E. i e. ( 1 ... M ) x = ( H ` ( T + ( P ` i ) ) ) \/ E. i e. { ( M + 1 ) } x = ( H ` ( T + ( P ` i ) ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) |
| 423 |
414 422
|
bitrid |
|- ( ph -> ( E. i e. ( ( 1 ... M ) u. { ( M + 1 ) } ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) |
| 424 |
413 423
|
bitrd |
|- ( ph -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) |
| 425 |
424
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) <-> ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) ) ) |
| 426 |
425
|
abbidv |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> { x | E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) } = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } ) |
| 427 |
|
eqid |
|- ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) |
| 428 |
427
|
rnmpt |
|- ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = { x | E. i e. ( 1 ... ( M + 1 ) ) x = ( H ` ( T + ( P ` i ) ) ) } |
| 429 |
15
|
rnmpt |
|- ran J = { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } |
| 430 |
|
df-sn |
|- { ( G ` B ) } = { x | x = ( G ` B ) } |
| 431 |
429 430
|
uneq12i |
|- ( ran J u. { ( G ` B ) } ) = ( { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } u. { x | x = ( G ` B ) } ) |
| 432 |
|
unab |
|- ( { x | E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) } u. { x | x = ( G ` B ) } ) = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } |
| 433 |
431 432
|
eqtri |
|- ( ran J u. { ( G ` B ) } ) = { x | ( E. i e. ( 1 ... M ) x = ( G ` ( B + ( E ` i ) ) ) \/ x = ( G ` B ) ) } |
| 434 |
426 428 433
|
3eqtr4g |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) = ( ran J u. { ( G ` B ) } ) ) |
| 435 |
434
|
fveq2d |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( # ` ( ran J u. { ( G ` B ) } ) ) ) |
| 436 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
| 437 |
|
dffn4 |
|- ( J Fn ( 1 ... M ) <-> J : ( 1 ... M ) -onto-> ran J ) |
| 438 |
20 437
|
mpbi |
|- J : ( 1 ... M ) -onto-> ran J |
| 439 |
|
fofi |
|- ( ( ( 1 ... M ) e. Fin /\ J : ( 1 ... M ) -onto-> ran J ) -> ran J e. Fin ) |
| 440 |
436 438 439
|
mp2an |
|- ran J e. Fin |
| 441 |
440
|
a1i |
|- ( ph -> ran J e. Fin ) |
| 442 |
|
fvex |
|- ( G ` B ) e. _V |
| 443 |
|
hashunsng |
|- ( ( G ` B ) e. _V -> ( ( ran J e. Fin /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) ) |
| 444 |
442 443
|
ax-mp |
|- ( ( ran J e. Fin /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) |
| 445 |
441 444
|
sylan |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ( ran J u. { ( G ` B ) } ) ) = ( ( # ` ran J ) + 1 ) ) |
| 446 |
16
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran J ) = M ) |
| 447 |
446
|
oveq1d |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( ( # ` ran J ) + 1 ) = ( M + 1 ) ) |
| 448 |
435 445 447
|
3eqtrd |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) |
| 449 |
412 448
|
jca |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) |
| 450 |
|
oveq1 |
|- ( a = T -> ( a + ( d ` i ) ) = ( T + ( d ` i ) ) ) |
| 451 |
450
|
oveq1d |
|- ( a = T -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) |
| 452 |
|
fvoveq1 |
|- ( a = T -> ( H ` ( a + ( d ` i ) ) ) = ( H ` ( T + ( d ` i ) ) ) ) |
| 453 |
452
|
sneqd |
|- ( a = T -> { ( H ` ( a + ( d ` i ) ) ) } = { ( H ` ( T + ( d ` i ) ) ) } ) |
| 454 |
453
|
imaeq2d |
|- ( a = T -> ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) |
| 455 |
451 454
|
sseq12d |
|- ( a = T -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) <-> ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) ) |
| 456 |
455
|
ralbidv |
|- ( a = T -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) ) ) |
| 457 |
452
|
mpteq2dv |
|- ( a = T -> ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) |
| 458 |
457
|
rneqd |
|- ( a = T -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) |
| 459 |
458
|
fveqeq2d |
|- ( a = T -> ( ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) <-> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) |
| 460 |
456 459
|
anbi12d |
|- ( a = T -> ( ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) <-> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) ) |
| 461 |
|
fveq1 |
|- ( d = P -> ( d ` i ) = ( P ` i ) ) |
| 462 |
461
|
oveq2d |
|- ( d = P -> ( T + ( d ` i ) ) = ( T + ( P ` i ) ) ) |
| 463 |
462 461
|
oveq12d |
|- ( d = P -> ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) ) |
| 464 |
462
|
fveq2d |
|- ( d = P -> ( H ` ( T + ( d ` i ) ) ) = ( H ` ( T + ( P ` i ) ) ) ) |
| 465 |
464
|
sneqd |
|- ( d = P -> { ( H ` ( T + ( d ` i ) ) ) } = { ( H ` ( T + ( P ` i ) ) ) } ) |
| 466 |
465
|
imaeq2d |
|- ( d = P -> ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) = ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) |
| 467 |
463 466
|
sseq12d |
|- ( d = P -> ( ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) <-> ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 468 |
467
|
ralbidv |
|- ( d = P -> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) ) ) |
| 469 |
464
|
mpteq2dv |
|- ( d = P -> ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) = ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) |
| 470 |
469
|
rneqd |
|- ( d = P -> ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) |
| 471 |
470
|
fveqeq2d |
|- ( d = P -> ( ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) <-> ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) |
| 472 |
468 471
|
anbi12d |
|- ( d = P -> ( ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( T + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( d ` i ) ) ) ) ) = ( M + 1 ) ) <-> ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) ) |
| 473 |
460 472
|
rspc2ev |
|- ( ( T e. NN /\ P e. ( NN ^m ( 1 ... ( M + 1 ) ) ) /\ ( A. i e. ( 1 ... ( M + 1 ) ) ( ( T + ( P ` i ) ) ( AP ` K ) ( P ` i ) ) C_ ( `' H " { ( H ` ( T + ( P ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( T + ( P ` i ) ) ) ) ) = ( M + 1 ) ) ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) |
| 474 |
48 73 449 473
|
syl3anc |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) |
| 475 |
|
ovex |
|- ( 1 ... ( W x. ( 2 x. V ) ) ) e. _V |
| 476 |
25
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> K e. NN ) |
| 477 |
476
|
nnnn0d |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> K e. NN0 ) |
| 478 |
4
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
| 479 |
6
|
adantr |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> M e. NN ) |
| 480 |
479
|
peano2nnd |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( M + 1 ) e. NN ) |
| 481 |
|
eqid |
|- ( 1 ... ( M + 1 ) ) = ( 1 ... ( M + 1 ) ) |
| 482 |
475 477 478 480 481
|
vdwpc |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H <-> E. a e. NN E. d e. ( NN ^m ( 1 ... ( M + 1 ) ) ) ( A. i e. ( 1 ... ( M + 1 ) ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' H " { ( H ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... ( M + 1 ) ) |-> ( H ` ( a + ( d ` i ) ) ) ) ) = ( M + 1 ) ) ) ) |
| 483 |
474 482
|
mpbird |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> <. ( M + 1 ) , K >. PolyAP H ) |
| 484 |
483
|
orcd |
|- ( ( ph /\ -. ( G ` B ) e. ran J ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) |
| 485 |
46 484
|
pm2.61dan |
|- ( ph -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) |