| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v |  |-  ( ph -> V e. NN ) | 
						
							| 2 |  | vdwlem3.w |  |-  ( ph -> W e. NN ) | 
						
							| 3 |  | vdwlem4.r |  |-  ( ph -> R e. Fin ) | 
						
							| 4 |  | vdwlem4.h |  |-  ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 5 |  | vdwlem4.f |  |-  F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | vdwlem7.g |  |-  ( ph -> G : ( 1 ... W ) --> R ) | 
						
							| 8 |  | vdwlem7.k |  |-  ( ph -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 9 |  | vdwlem7.a |  |-  ( ph -> A e. NN ) | 
						
							| 10 |  | vdwlem7.d |  |-  ( ph -> D e. NN ) | 
						
							| 11 |  | vdwlem7.s |  |-  ( ph -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) | 
						
							| 12 |  | ovex |  |-  ( 1 ... W ) e. _V | 
						
							| 13 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 14 |  | eluznn0 |  |-  ( ( 2 e. NN0 /\ K e. ( ZZ>= ` 2 ) ) -> K e. NN0 ) | 
						
							| 15 | 13 8 14 | sylancr |  |-  ( ph -> K e. NN0 ) | 
						
							| 16 |  | eqid |  |-  ( 1 ... M ) = ( 1 ... M ) | 
						
							| 17 | 12 15 7 6 16 | vdwpc |  |-  ( ph -> ( <. M , K >. PolyAP G <-> E. a e. NN E. d e. ( NN ^m ( 1 ... M ) ) ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) | 
						
							| 18 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> V e. NN ) | 
						
							| 19 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> W e. NN ) | 
						
							| 20 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> R e. Fin ) | 
						
							| 21 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) | 
						
							| 22 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> M e. NN ) | 
						
							| 23 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> G : ( 1 ... W ) --> R ) | 
						
							| 24 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 25 | 9 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A e. NN ) | 
						
							| 26 | 10 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> D e. NN ) | 
						
							| 27 | 11 | ad2antrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) | 
						
							| 28 |  | simplrl |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> a e. NN ) | 
						
							| 29 |  | simplrr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> d e. ( NN ^m ( 1 ... M ) ) ) | 
						
							| 30 |  | nnex |  |-  NN e. _V | 
						
							| 31 |  | ovex |  |-  ( 1 ... M ) e. _V | 
						
							| 32 | 30 31 | elmap |  |-  ( d e. ( NN ^m ( 1 ... M ) ) <-> d : ( 1 ... M ) --> NN ) | 
						
							| 33 | 29 32 | sylib |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> d : ( 1 ... M ) --> NN ) | 
						
							| 34 |  | simprl |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) ) | 
						
							| 35 |  | fveq2 |  |-  ( i = k -> ( d ` i ) = ( d ` k ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( i = k -> ( a + ( d ` i ) ) = ( a + ( d ` k ) ) ) | 
						
							| 37 | 36 35 | oveq12d |  |-  ( i = k -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) ) | 
						
							| 38 | 36 | fveq2d |  |-  ( i = k -> ( G ` ( a + ( d ` i ) ) ) = ( G ` ( a + ( d ` k ) ) ) ) | 
						
							| 39 | 38 | sneqd |  |-  ( i = k -> { ( G ` ( a + ( d ` i ) ) ) } = { ( G ` ( a + ( d ` k ) ) ) } ) | 
						
							| 40 | 39 | imaeq2d |  |-  ( i = k -> ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) = ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) | 
						
							| 41 | 37 40 | sseq12d |  |-  ( i = k -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) <-> ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) ) | 
						
							| 42 | 41 | cbvralvw |  |-  ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) <-> A. k e. ( 1 ... M ) ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) | 
						
							| 43 | 34 42 | sylib |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A. k e. ( 1 ... M ) ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) | 
						
							| 44 | 38 | cbvmptv |  |-  ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) = ( k e. ( 1 ... M ) |-> ( G ` ( a + ( d ` k ) ) ) ) | 
						
							| 45 |  | simprr |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) | 
						
							| 46 |  | eqid |  |-  ( a + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) = ( a + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) | 
						
							| 47 |  | eqid |  |-  ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( d ` j ) ) + ( W x. D ) ) ) = ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( d ` j ) ) + ( W x. D ) ) ) | 
						
							| 48 | 18 19 20 21 5 22 23 24 25 26 27 28 33 43 44 45 46 47 | vdwlem6 |  |-  ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) -> ( ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) | 
						
							| 50 | 49 | rexlimdvva |  |-  ( ph -> ( E. a e. NN E. d e. ( NN ^m ( 1 ... M ) ) ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) | 
						
							| 51 | 17 50 | sylbid |  |-  ( ph -> ( <. M , K >. PolyAP G -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) |