| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem3.v |
|- ( ph -> V e. NN ) |
| 2 |
|
vdwlem3.w |
|- ( ph -> W e. NN ) |
| 3 |
|
vdwlem4.r |
|- ( ph -> R e. Fin ) |
| 4 |
|
vdwlem4.h |
|- ( ph -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
| 5 |
|
vdwlem4.f |
|- F = ( x e. ( 1 ... V ) |-> ( y e. ( 1 ... W ) |-> ( H ` ( y + ( W x. ( ( x - 1 ) + V ) ) ) ) ) ) |
| 6 |
|
vdwlem7.m |
|- ( ph -> M e. NN ) |
| 7 |
|
vdwlem7.g |
|- ( ph -> G : ( 1 ... W ) --> R ) |
| 8 |
|
vdwlem7.k |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
| 9 |
|
vdwlem7.a |
|- ( ph -> A e. NN ) |
| 10 |
|
vdwlem7.d |
|- ( ph -> D e. NN ) |
| 11 |
|
vdwlem7.s |
|- ( ph -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) |
| 12 |
|
ovex |
|- ( 1 ... W ) e. _V |
| 13 |
|
2nn0 |
|- 2 e. NN0 |
| 14 |
|
eluznn0 |
|- ( ( 2 e. NN0 /\ K e. ( ZZ>= ` 2 ) ) -> K e. NN0 ) |
| 15 |
13 8 14
|
sylancr |
|- ( ph -> K e. NN0 ) |
| 16 |
|
eqid |
|- ( 1 ... M ) = ( 1 ... M ) |
| 17 |
12 15 7 6 16
|
vdwpc |
|- ( ph -> ( <. M , K >. PolyAP G <-> E. a e. NN E. d e. ( NN ^m ( 1 ... M ) ) ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) ) |
| 18 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> V e. NN ) |
| 19 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> W e. NN ) |
| 20 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> R e. Fin ) |
| 21 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> H : ( 1 ... ( W x. ( 2 x. V ) ) ) --> R ) |
| 22 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> M e. NN ) |
| 23 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> G : ( 1 ... W ) --> R ) |
| 24 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> K e. ( ZZ>= ` 2 ) ) |
| 25 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A e. NN ) |
| 26 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> D e. NN ) |
| 27 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( A ( AP ` K ) D ) C_ ( `' F " { G } ) ) |
| 28 |
|
simplrl |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> a e. NN ) |
| 29 |
|
simplrr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> d e. ( NN ^m ( 1 ... M ) ) ) |
| 30 |
|
nnex |
|- NN e. _V |
| 31 |
|
ovex |
|- ( 1 ... M ) e. _V |
| 32 |
30 31
|
elmap |
|- ( d e. ( NN ^m ( 1 ... M ) ) <-> d : ( 1 ... M ) --> NN ) |
| 33 |
29 32
|
sylib |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> d : ( 1 ... M ) --> NN ) |
| 34 |
|
simprl |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) ) |
| 35 |
|
fveq2 |
|- ( i = k -> ( d ` i ) = ( d ` k ) ) |
| 36 |
35
|
oveq2d |
|- ( i = k -> ( a + ( d ` i ) ) = ( a + ( d ` k ) ) ) |
| 37 |
36 35
|
oveq12d |
|- ( i = k -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) ) |
| 38 |
36
|
fveq2d |
|- ( i = k -> ( G ` ( a + ( d ` i ) ) ) = ( G ` ( a + ( d ` k ) ) ) ) |
| 39 |
38
|
sneqd |
|- ( i = k -> { ( G ` ( a + ( d ` i ) ) ) } = { ( G ` ( a + ( d ` k ) ) ) } ) |
| 40 |
39
|
imaeq2d |
|- ( i = k -> ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) = ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) |
| 41 |
37 40
|
sseq12d |
|- ( i = k -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) <-> ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) ) |
| 42 |
41
|
cbvralvw |
|- ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) <-> A. k e. ( 1 ... M ) ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) |
| 43 |
34 42
|
sylib |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> A. k e. ( 1 ... M ) ( ( a + ( d ` k ) ) ( AP ` K ) ( d ` k ) ) C_ ( `' G " { ( G ` ( a + ( d ` k ) ) ) } ) ) |
| 44 |
38
|
cbvmptv |
|- ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) = ( k e. ( 1 ... M ) |-> ( G ` ( a + ( d ` k ) ) ) ) |
| 45 |
|
simprr |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) |
| 46 |
|
eqid |
|- ( a + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) = ( a + ( W x. ( ( A + ( V - D ) ) - 1 ) ) ) |
| 47 |
|
eqid |
|- ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( d ` j ) ) + ( W x. D ) ) ) = ( j e. ( 1 ... ( M + 1 ) ) |-> ( if ( j = ( M + 1 ) , 0 , ( d ` j ) ) + ( W x. D ) ) ) |
| 48 |
18 19 20 21 5 22 23 24 25 26 27 28 33 43 44 45 46 47
|
vdwlem6 |
|- ( ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) /\ ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) |
| 49 |
48
|
ex |
|- ( ( ph /\ ( a e. NN /\ d e. ( NN ^m ( 1 ... M ) ) ) ) -> ( ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) |
| 50 |
49
|
rexlimdvva |
|- ( ph -> ( E. a e. NN E. d e. ( NN ^m ( 1 ... M ) ) ( A. i e. ( 1 ... M ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' G " { ( G ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... M ) |-> ( G ` ( a + ( d ` i ) ) ) ) ) = M ) -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) |
| 51 |
17 50
|
sylbid |
|- ( ph -> ( <. M , K >. PolyAP G -> ( <. ( M + 1 ) , K >. PolyAP H \/ ( K + 1 ) MonoAP G ) ) ) |