Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem3.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
2 |
|
vdwlem3.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
3 |
|
vdwlem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
4 |
|
vdwlem4.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
5 |
|
vdwlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ) |
6 |
|
vdwlem7.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
vdwlem7.g |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
8 |
|
vdwlem7.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
vdwlem7.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
10 |
|
vdwlem7.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
11 |
|
vdwlem7.s |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐺 } ) ) |
12 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
|
eluznn0 |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐾 ∈ ℕ0 ) |
15 |
13 8 14
|
sylancr |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
16 |
|
eqid |
⊢ ( 1 ... 𝑀 ) = ( 1 ... 𝑀 ) |
17 |
12 15 7 6 16
|
vdwpc |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐺 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) ) |
18 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑉 ∈ ℕ ) |
19 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑊 ∈ ℕ ) |
20 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑅 ∈ Fin ) |
21 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑀 ∈ ℕ ) |
23 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
24 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
25 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝐴 ∈ ℕ ) |
26 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝐷 ∈ ℕ ) |
27 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐺 } ) ) |
28 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑎 ∈ ℕ ) |
29 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) |
30 |
|
nnex |
⊢ ℕ ∈ V |
31 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
32 |
30 31
|
elmap |
⊢ ( 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ↔ 𝑑 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
33 |
29 32
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → 𝑑 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
34 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) |
35 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ‘ 𝑖 ) = ( 𝑑 ‘ 𝑘 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) = ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) |
37 |
36 35
|
oveq12d |
⊢ ( 𝑖 = 𝑘 → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) ) ) |
38 |
36
|
fveq2d |
⊢ ( 𝑖 = 𝑘 → ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) ) |
39 |
38
|
sneqd |
⊢ ( 𝑖 = 𝑘 → { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) } ) |
40 |
39
|
imaeq2d |
⊢ ( 𝑖 = 𝑘 → ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) } ) ) |
41 |
37 40
|
sseq12d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) } ) ) ) |
42 |
41
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) } ) ) |
43 |
34 42
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) } ) ) |
44 |
38
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑘 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑘 ) ) ) ) |
45 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) |
46 |
|
eqid |
⊢ ( 𝑎 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) = ( 𝑎 + ( 𝑊 · ( ( 𝐴 + ( 𝑉 − 𝐷 ) ) − 1 ) ) ) |
47 |
|
eqid |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝑑 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ) = ( 𝑗 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( if ( 𝑗 = ( 𝑀 + 1 ) , 0 , ( 𝑑 ‘ 𝑗 ) ) + ( 𝑊 · 𝐷 ) ) ) |
48 |
18 19 20 21 5 22 23 24 25 26 27 28 33 43 44 45 46 47
|
vdwlem6 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) |
49 |
48
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) ) |
50 |
49
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 𝑀 ) ) ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐺 “ { ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( 𝐺 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) ) |
51 |
17 50
|
sylbid |
⊢ ( 𝜑 → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝐺 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐺 ) ) ) |