| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem3.v | ⊢ ( 𝜑  →  𝑉  ∈  ℕ ) | 
						
							| 2 |  | vdwlem3.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 3 |  | vdwlem4.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 4 |  | vdwlem4.h | ⊢ ( 𝜑  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 5 |  | vdwlem4.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑉 )  ↦  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 6 |  | vdwlem7.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | vdwlem7.g | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 8 |  | vdwlem7.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | vdwlem7.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 10 |  | vdwlem7.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ ) | 
						
							| 11 |  | vdwlem7.s | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ⊆  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 12 |  | ovex | ⊢ ( 1 ... 𝑊 )  ∈  V | 
						
							| 13 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 14 |  | eluznn0 | ⊢ ( ( 2  ∈  ℕ0  ∧  𝐾  ∈  ( ℤ≥ ‘ 2 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 15 | 13 8 14 | sylancr | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 16 |  | eqid | ⊢ ( 1 ... 𝑀 )  =  ( 1 ... 𝑀 ) | 
						
							| 17 | 12 15 7 6 16 | vdwpc | ⊢ ( 𝜑  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐺  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) ) ) | 
						
							| 18 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑉  ∈  ℕ ) | 
						
							| 19 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑊  ∈  ℕ ) | 
						
							| 20 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑅  ∈  Fin ) | 
						
							| 21 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 22 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 23 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 24 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 25 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 26 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 27 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 )  ⊆  ( ◡ 𝐹  “  { 𝐺 } ) ) | 
						
							| 28 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑎  ∈  ℕ ) | 
						
							| 29 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) | 
						
							| 30 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 31 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 32 | 30 31 | elmap | ⊢ ( 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) )  ↔  𝑑 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 33 | 29 32 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  𝑑 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 34 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑑 ‘ 𝑖 )  =  ( 𝑑 ‘ 𝑘 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑖  =  𝑘  →  ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) )  =  ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) | 
						
							| 37 | 36 35 | oveq12d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  =  ( ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) ) ) | 
						
							| 38 | 36 | fveq2d | ⊢ ( 𝑖  =  𝑘  →  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) )  =  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) ) | 
						
							| 39 | 38 | sneqd | ⊢ ( 𝑖  =  𝑘  →  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) }  =  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) } ) | 
						
							| 40 | 39 | imaeq2d | ⊢ ( 𝑖  =  𝑘  →  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) } ) ) | 
						
							| 41 | 37 40 | sseq12d | ⊢ ( 𝑖  =  𝑘  →  ( ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) } ) ) ) | 
						
							| 42 | 41 | cbvralvw | ⊢ ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ↔  ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) } ) ) | 
						
							| 43 | 34 42 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  ∀ 𝑘  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑘 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) } ) ) | 
						
							| 44 | 38 | cbvmptv | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) )  =  ( 𝑘  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑘 ) ) ) ) | 
						
							| 45 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) | 
						
							| 46 |  | eqid | ⊢ ( 𝑎  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) )  =  ( 𝑎  +  ( 𝑊  ·  ( ( 𝐴  +  ( 𝑉  −  𝐷 ) )  −  1 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝑑 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) ) )  =  ( 𝑗  ∈  ( 1 ... ( 𝑀  +  1 ) )  ↦  ( if ( 𝑗  =  ( 𝑀  +  1 ) ,  0 ,  ( 𝑑 ‘ 𝑗 ) )  +  ( 𝑊  ·  𝐷 ) ) ) | 
						
							| 48 | 18 19 20 21 5 22 23 24 25 26 27 28 33 43 44 45 46 47 | vdwlem6 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  ∧  ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 ) )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) | 
						
							| 49 | 48 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ) )  →  ( ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) ) | 
						
							| 50 | 49 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ( ℕ  ↑m  ( 1 ... 𝑀 ) ) ( ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐺  “  { ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) } )  ∧  ( ♯ ‘ ran  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( 𝐺 ‘ ( 𝑎  +  ( 𝑑 ‘ 𝑖 ) ) ) ) )  =  𝑀 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) ) | 
						
							| 51 | 17 50 | sylbid | ⊢ ( 𝜑  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝐺  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐺 ) ) ) |