Metamath Proof Explorer


Theorem vdwlem7

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem3.v φ V
vdwlem3.w φ W
vdwlem4.r φ R Fin
vdwlem4.h φ H : 1 W 2 V R
vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
vdwlem7.m φ M
vdwlem7.g φ G : 1 W R
vdwlem7.k φ K 2
vdwlem7.a φ A
vdwlem7.d φ D
vdwlem7.s φ A AP K D F -1 G
Assertion vdwlem7 φ M K PolyAP G M + 1 K PolyAP H K + 1 MonoAP G

Proof

Step Hyp Ref Expression
1 vdwlem3.v φ V
2 vdwlem3.w φ W
3 vdwlem4.r φ R Fin
4 vdwlem4.h φ H : 1 W 2 V R
5 vdwlem4.f F = x 1 V y 1 W H y + W x - 1 + V
6 vdwlem7.m φ M
7 vdwlem7.g φ G : 1 W R
8 vdwlem7.k φ K 2
9 vdwlem7.a φ A
10 vdwlem7.d φ D
11 vdwlem7.s φ A AP K D F -1 G
12 ovex 1 W V
13 2nn0 2 0
14 eluznn0 2 0 K 2 K 0
15 13 8 14 sylancr φ K 0
16 eqid 1 M = 1 M
17 12 15 7 6 16 vdwpc φ M K PolyAP G a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M
18 1 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M V
19 2 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M W
20 3 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M R Fin
21 4 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M H : 1 W 2 V R
22 6 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M M
23 7 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M G : 1 W R
24 8 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M K 2
25 9 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M A
26 10 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M D
27 11 ad2antrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M A AP K D F -1 G
28 simplrl φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M a
29 simplrr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M d 1 M
30 nnex V
31 ovex 1 M V
32 30 31 elmap d 1 M d : 1 M
33 29 32 sylib φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M d : 1 M
34 simprl φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M i 1 M a + d i AP K d i G -1 G a + d i
35 fveq2 i = k d i = d k
36 35 oveq2d i = k a + d i = a + d k
37 36 35 oveq12d i = k a + d i AP K d i = a + d k AP K d k
38 36 fveq2d i = k G a + d i = G a + d k
39 38 sneqd i = k G a + d i = G a + d k
40 39 imaeq2d i = k G -1 G a + d i = G -1 G a + d k
41 37 40 sseq12d i = k a + d i AP K d i G -1 G a + d i a + d k AP K d k G -1 G a + d k
42 41 cbvralvw i 1 M a + d i AP K d i G -1 G a + d i k 1 M a + d k AP K d k G -1 G a + d k
43 34 42 sylib φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M k 1 M a + d k AP K d k G -1 G a + d k
44 38 cbvmptv i 1 M G a + d i = k 1 M G a + d k
45 simprr φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M ran i 1 M G a + d i = M
46 eqid a + W A + V D - 1 = a + W A + V D - 1
47 eqid j 1 M + 1 if j = M + 1 0 d j + W D = j 1 M + 1 if j = M + 1 0 d j + W D
48 18 19 20 21 5 22 23 24 25 26 27 28 33 43 44 45 46 47 vdwlem6 φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M M + 1 K PolyAP H K + 1 MonoAP G
49 48 ex φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M M + 1 K PolyAP H K + 1 MonoAP G
50 49 rexlimdvva φ a d 1 M i 1 M a + d i AP K d i G -1 G a + d i ran i 1 M G a + d i = M M + 1 K PolyAP H K + 1 MonoAP G
51 17 50 sylbid φ M K PolyAP G M + 1 K PolyAP H K + 1 MonoAP G