Metamath Proof Explorer


Theorem vdwlem8

Description: Lemma for vdw . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwlem8.r φ R Fin
vdwlem8.k φ K 2
vdwlem8.w φ W
vdwlem8.f φ F : 1 2 W R
vdwlem8.c C V
vdwlem8.a φ A
vdwlem8.d φ D
vdwlem8.s φ A AP K D G -1 C
vdwlem8.g G = x 1 W F x + W
Assertion vdwlem8 φ 1 K PolyAP F

Proof

Step Hyp Ref Expression
1 vdwlem8.r φ R Fin
2 vdwlem8.k φ K 2
3 vdwlem8.w φ W
4 vdwlem8.f φ F : 1 2 W R
5 vdwlem8.c C V
6 vdwlem8.a φ A
7 vdwlem8.d φ D
8 vdwlem8.s φ A AP K D G -1 C
9 vdwlem8.g G = x 1 W F x + W
10 6 nncnd φ A
11 7 nncnd φ D
12 10 11 addcomd φ A + D = D + A
13 12 oveq2d φ W A + D = W D + A
14 3 nncnd φ W
15 14 11 10 subsub4d φ W - D - A = W D + A
16 13 15 eqtr4d φ W A + D = W - D - A
17 16 oveq2d φ A + A + W A + D = A + A + W - D - A
18 14 11 subcld φ W D
19 10 10 18 ppncand φ A + A + W - D - A = A + W - D
20 17 19 eqtrd φ A + A + W A + D = A + W - D
21 6 6 nnaddcld φ A + A
22 cnvimass G -1 C dom G
23 fvex F x + W V
24 23 9 dmmpti dom G = 1 W
25 22 24 sseqtri G -1 C 1 W
26 8 25 sstrdi φ A AP K D 1 W
27 ssun2 A + D AP K 1 D A A + D AP K 1 D
28 uz2m1nn K 2 K 1
29 2 28 syl φ K 1
30 6 7 nnaddcld φ A + D
31 vdwapid1 K 1 A + D D A + D A + D AP K 1 D
32 29 30 7 31 syl3anc φ A + D A + D AP K 1 D
33 27 32 sselid φ A + D A A + D AP K 1 D
34 eluz2nn K 2 K
35 2 34 syl φ K
36 35 nncnd φ K
37 ax-1cn 1
38 npcan K 1 K - 1 + 1 = K
39 36 37 38 sylancl φ K - 1 + 1 = K
40 39 fveq2d φ AP K - 1 + 1 = AP K
41 40 oveqd φ A AP K - 1 + 1 D = A AP K D
42 29 nnnn0d φ K 1 0
43 vdwapun K 1 0 A D A AP K - 1 + 1 D = A A + D AP K 1 D
44 42 6 7 43 syl3anc φ A AP K - 1 + 1 D = A A + D AP K 1 D
45 41 44 eqtr3d φ A AP K D = A A + D AP K 1 D
46 33 45 eleqtrrd φ A + D A AP K D
47 26 46 sseldd φ A + D 1 W
48 elfzuz3 A + D 1 W W A + D
49 uznn0sub W A + D W A + D 0
50 47 48 49 3syl φ W A + D 0
51 nnnn0addcl A + A W A + D 0 A + A + W A + D
52 21 50 51 syl2anc φ A + A + W A + D
53 20 52 eqeltrrd φ A + W - D
54 1nn 1
55 f1osng 1 D 1 D : 1 1-1 onto D
56 54 7 55 sylancr φ 1 D : 1 1-1 onto D
57 f1of 1 D : 1 1-1 onto D 1 D : 1 D
58 56 57 syl φ 1 D : 1 D
59 7 snssd φ D
60 58 59 fssd φ 1 D : 1
61 1z 1
62 fzsn 1 1 1 = 1
63 61 62 ax-mp 1 1 = 1
64 63 feq2i 1 D : 1 1 1 D : 1
65 60 64 sylibr φ 1 D : 1 1
66 nnex V
67 ovex 1 1 V
68 66 67 elmap 1 D 1 1 1 D : 1 1
69 65 68 sylibr φ 1 D 1 1
70 6 3 nnaddcld φ A + W
71 70 adantr φ m 0 K 1 A + W
72 elfznn0 m 0 K 1 m 0
73 7 nnnn0d φ D 0
74 nn0mulcl m 0 D 0 m D 0
75 72 73 74 syl2anr φ m 0 K 1 m D 0
76 nnnn0addcl A + W m D 0 A + W + m D
77 71 75 76 syl2anc φ m 0 K 1 A + W + m D
78 nnuz = 1
79 77 78 eleqtrdi φ m 0 K 1 A + W + m D 1
80 8 adantr φ m 0 K 1 A AP K D G -1 C
81 eqid A + m D = A + m D
82 oveq1 n = m n D = m D
83 82 oveq2d n = m A + n D = A + m D
84 83 rspceeqv m 0 K 1 A + m D = A + m D n 0 K 1 A + m D = A + n D
85 81 84 mpan2 m 0 K 1 n 0 K 1 A + m D = A + n D
86 35 nnnn0d φ K 0
87 vdwapval K 0 A D A + m D A AP K D n 0 K 1 A + m D = A + n D
88 86 6 7 87 syl3anc φ A + m D A AP K D n 0 K 1 A + m D = A + n D
89 88 biimpar φ n 0 K 1 A + m D = A + n D A + m D A AP K D
90 85 89 sylan2 φ m 0 K 1 A + m D A AP K D
91 80 90 sseldd φ m 0 K 1 A + m D G -1 C
92 23 9 fnmpti G Fn 1 W
93 fniniseg G Fn 1 W A + m D G -1 C A + m D 1 W G A + m D = C
94 92 93 ax-mp A + m D G -1 C A + m D 1 W G A + m D = C
95 91 94 sylib φ m 0 K 1 A + m D 1 W G A + m D = C
96 95 simpld φ m 0 K 1 A + m D 1 W
97 elfzuz3 A + m D 1 W W A + m D
98 eluzelz W A + m D W
99 eluzadd W A + m D W W + W A + m D + W
100 98 99 mpdan W A + m D W + W A + m D + W
101 96 97 100 3syl φ m 0 K 1 W + W A + m D + W
102 14 2timesd φ 2 W = W + W
103 102 adantr φ m 0 K 1 2 W = W + W
104 10 adantr φ m 0 K 1 A
105 14 adantr φ m 0 K 1 W
106 75 nn0cnd φ m 0 K 1 m D
107 104 105 106 add32d φ m 0 K 1 A + W + m D = A + m D + W
108 107 fveq2d φ m 0 K 1 A + W + m D = A + m D + W
109 101 103 108 3eltr4d φ m 0 K 1 2 W A + W + m D
110 elfzuzb A + W + m D 1 2 W A + W + m D 1 2 W A + W + m D
111 79 109 110 sylanbrc φ m 0 K 1 A + W + m D 1 2 W
112 107 fveq2d φ m 0 K 1 F A + W + m D = F A + m D + W
113 fvoveq1 x = A + m D F x + W = F A + m D + W
114 fvex F A + m D + W V
115 113 9 114 fvmpt A + m D 1 W G A + m D = F A + m D + W
116 96 115 syl φ m 0 K 1 G A + m D = F A + m D + W
117 95 simprd φ m 0 K 1 G A + m D = C
118 112 116 117 3eqtr2d φ m 0 K 1 F A + W + m D = C
119 111 118 jca φ m 0 K 1 A + W + m D 1 2 W F A + W + m D = C
120 eleq1 x = A + W + m D x 1 2 W A + W + m D 1 2 W
121 fveqeq2 x = A + W + m D F x = C F A + W + m D = C
122 120 121 anbi12d x = A + W + m D x 1 2 W F x = C A + W + m D 1 2 W F A + W + m D = C
123 119 122 syl5ibrcom φ m 0 K 1 x = A + W + m D x 1 2 W F x = C
124 123 rexlimdva φ m 0 K 1 x = A + W + m D x 1 2 W F x = C
125 vdwapval K 0 A + W D x A + W AP K D m 0 K 1 x = A + W + m D
126 86 70 7 125 syl3anc φ x A + W AP K D m 0 K 1 x = A + W + m D
127 ffn F : 1 2 W R F Fn 1 2 W
128 fniniseg F Fn 1 2 W x F -1 C x 1 2 W F x = C
129 4 127 128 3syl φ x F -1 C x 1 2 W F x = C
130 124 126 129 3imtr4d φ x A + W AP K D x F -1 C
131 130 ssrdv φ A + W AP K D F -1 C
132 fvsng 1 D 1 D 1 = D
133 54 7 132 sylancr φ 1 D 1 = D
134 133 oveq2d φ A + W D + 1 D 1 = A + W D + D
135 10 18 11 addassd φ A + W D + D = A + W D + D
136 14 11 npcand φ W - D + D = W
137 136 oveq2d φ A + W D + D = A + W
138 134 135 137 3eqtrd φ A + W D + 1 D 1 = A + W
139 138 133 oveq12d φ A + W D + 1 D 1 AP K 1 D 1 = A + W AP K D
140 138 fveq2d φ F A + W D + 1 D 1 = F A + W
141 vdwapid1 K A D A A AP K D
142 35 6 7 141 syl3anc φ A A AP K D
143 8 142 sseldd φ A G -1 C
144 fniniseg G Fn 1 W A G -1 C A 1 W G A = C
145 92 144 ax-mp A G -1 C A 1 W G A = C
146 143 145 sylib φ A 1 W G A = C
147 146 simpld φ A 1 W
148 fvoveq1 x = A F x + W = F A + W
149 fvex F A + W V
150 148 9 149 fvmpt A 1 W G A = F A + W
151 147 150 syl φ G A = F A + W
152 146 simprd φ G A = C
153 140 151 152 3eqtr2d φ F A + W D + 1 D 1 = C
154 153 sneqd φ F A + W D + 1 D 1 = C
155 154 imaeq2d φ F -1 F A + W D + 1 D 1 = F -1 C
156 131 139 155 3sstr4d φ A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1
157 156 ralrimivw φ i 1 1 A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1
158 153 mpteq2dv φ i 1 1 F A + W D + 1 D 1 = i 1 1 C
159 fconstmpt 1 1 × C = i 1 1 C
160 158 159 eqtr4di φ i 1 1 F A + W D + 1 D 1 = 1 1 × C
161 160 rneqd φ ran i 1 1 F A + W D + 1 D 1 = ran 1 1 × C
162 elfz3 1 1 1 1
163 ne0i 1 1 1 1 1
164 61 162 163 mp2b 1 1
165 rnxp 1 1 ran 1 1 × C = C
166 164 165 ax-mp ran 1 1 × C = C
167 161 166 eqtrdi φ ran i 1 1 F A + W D + 1 D 1 = C
168 167 fveq2d φ ran i 1 1 F A + W D + 1 D 1 = C
169 hashsng C V C = 1
170 5 169 ax-mp C = 1
171 168 170 eqtrdi φ ran i 1 1 F A + W D + 1 D 1 = 1
172 oveq1 a = A + W - D a + d i = A + W D + d i
173 172 oveq1d a = A + W - D a + d i AP K d i = A + W D + d i AP K d i
174 fvoveq1 a = A + W - D F a + d i = F A + W D + d i
175 174 sneqd a = A + W - D F a + d i = F A + W D + d i
176 175 imaeq2d a = A + W - D F -1 F a + d i = F -1 F A + W D + d i
177 173 176 sseq12d a = A + W - D a + d i AP K d i F -1 F a + d i A + W D + d i AP K d i F -1 F A + W D + d i
178 177 ralbidv a = A + W - D i 1 1 a + d i AP K d i F -1 F a + d i i 1 1 A + W D + d i AP K d i F -1 F A + W D + d i
179 174 mpteq2dv a = A + W - D i 1 1 F a + d i = i 1 1 F A + W D + d i
180 179 rneqd a = A + W - D ran i 1 1 F a + d i = ran i 1 1 F A + W D + d i
181 180 fveqeq2d a = A + W - D ran i 1 1 F a + d i = 1 ran i 1 1 F A + W D + d i = 1
182 178 181 anbi12d a = A + W - D i 1 1 a + d i AP K d i F -1 F a + d i ran i 1 1 F a + d i = 1 i 1 1 A + W D + d i AP K d i F -1 F A + W D + d i ran i 1 1 F A + W D + d i = 1
183 fveq1 d = 1 D d i = 1 D i
184 elfz1eq i 1 1 i = 1
185 184 fveq2d i 1 1 1 D i = 1 D 1
186 183 185 sylan9eq d = 1 D i 1 1 d i = 1 D 1
187 186 oveq2d d = 1 D i 1 1 A + W D + d i = A + W D + 1 D 1
188 187 186 oveq12d d = 1 D i 1 1 A + W D + d i AP K d i = A + W D + 1 D 1 AP K 1 D 1
189 187 fveq2d d = 1 D i 1 1 F A + W D + d i = F A + W D + 1 D 1
190 189 sneqd d = 1 D i 1 1 F A + W D + d i = F A + W D + 1 D 1
191 190 imaeq2d d = 1 D i 1 1 F -1 F A + W D + d i = F -1 F A + W D + 1 D 1
192 188 191 sseq12d d = 1 D i 1 1 A + W D + d i AP K d i F -1 F A + W D + d i A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1
193 192 ralbidva d = 1 D i 1 1 A + W D + d i AP K d i F -1 F A + W D + d i i 1 1 A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1
194 189 mpteq2dva d = 1 D i 1 1 F A + W D + d i = i 1 1 F A + W D + 1 D 1
195 194 rneqd d = 1 D ran i 1 1 F A + W D + d i = ran i 1 1 F A + W D + 1 D 1
196 195 fveqeq2d d = 1 D ran i 1 1 F A + W D + d i = 1 ran i 1 1 F A + W D + 1 D 1 = 1
197 193 196 anbi12d d = 1 D i 1 1 A + W D + d i AP K d i F -1 F A + W D + d i ran i 1 1 F A + W D + d i = 1 i 1 1 A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1 ran i 1 1 F A + W D + 1 D 1 = 1
198 182 197 rspc2ev A + W - D 1 D 1 1 i 1 1 A + W D + 1 D 1 AP K 1 D 1 F -1 F A + W D + 1 D 1 ran i 1 1 F A + W D + 1 D 1 = 1 a d 1 1 i 1 1 a + d i AP K d i F -1 F a + d i ran i 1 1 F a + d i = 1
199 53 69 157 171 198 syl112anc φ a d 1 1 i 1 1 a + d i AP K d i F -1 F a + d i ran i 1 1 F a + d i = 1
200 ovex 1 2 W V
201 54 a1i φ 1
202 eqid 1 1 = 1 1
203 200 86 4 201 202 vdwpc φ 1 K PolyAP F a d 1 1 i 1 1 a + d i AP K d i F -1 F a + d i ran i 1 1 F a + d i = 1
204 199 203 mpbird φ 1 K PolyAP F