Metamath Proof Explorer


Theorem vdwlem8

Description: Lemma for vdw . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdwlem8.r φRFin
vdwlem8.k φK2
vdwlem8.w φW
vdwlem8.f φF:12WR
vdwlem8.c CV
vdwlem8.a φA
vdwlem8.d φD
vdwlem8.s φAAPKDG-1C
vdwlem8.g G=x1WFx+W
Assertion vdwlem8 φ1KPolyAPF

Proof

Step Hyp Ref Expression
1 vdwlem8.r φRFin
2 vdwlem8.k φK2
3 vdwlem8.w φW
4 vdwlem8.f φF:12WR
5 vdwlem8.c CV
6 vdwlem8.a φA
7 vdwlem8.d φD
8 vdwlem8.s φAAPKDG-1C
9 vdwlem8.g G=x1WFx+W
10 6 nncnd φA
11 7 nncnd φD
12 10 11 addcomd φA+D=D+A
13 12 oveq2d φWA+D=WD+A
14 3 nncnd φW
15 14 11 10 subsub4d φW-D-A=WD+A
16 13 15 eqtr4d φWA+D=W-D-A
17 16 oveq2d φA+A+WA+D=A+A+W-D-A
18 14 11 subcld φWD
19 10 10 18 ppncand φA+A+W-D-A=A+W-D
20 17 19 eqtrd φA+A+WA+D=A+W-D
21 6 6 nnaddcld φA+A
22 cnvimass G-1CdomG
23 fvex Fx+WV
24 23 9 dmmpti domG=1W
25 22 24 sseqtri G-1C1W
26 8 25 sstrdi φAAPKD1W
27 ssun2 A+DAPK1DAA+DAPK1D
28 uz2m1nn K2K1
29 2 28 syl φK1
30 6 7 nnaddcld φA+D
31 vdwapid1 K1A+DDA+DA+DAPK1D
32 29 30 7 31 syl3anc φA+DA+DAPK1D
33 27 32 sselid φA+DAA+DAPK1D
34 eluz2nn K2K
35 2 34 syl φK
36 35 nncnd φK
37 ax-1cn 1
38 npcan K1K-1+1=K
39 36 37 38 sylancl φK-1+1=K
40 39 fveq2d φAPK-1+1=APK
41 40 oveqd φAAPK-1+1D=AAPKD
42 29 nnnn0d φK10
43 vdwapun K10ADAAPK-1+1D=AA+DAPK1D
44 42 6 7 43 syl3anc φAAPK-1+1D=AA+DAPK1D
45 41 44 eqtr3d φAAPKD=AA+DAPK1D
46 33 45 eleqtrrd φA+DAAPKD
47 26 46 sseldd φA+D1W
48 elfzuz3 A+D1WWA+D
49 uznn0sub WA+DWA+D0
50 47 48 49 3syl φWA+D0
51 nnnn0addcl A+AWA+D0A+A+WA+D
52 21 50 51 syl2anc φA+A+WA+D
53 20 52 eqeltrrd φA+W-D
54 1nn 1
55 f1osng 1D1D:11-1 ontoD
56 54 7 55 sylancr φ1D:11-1 ontoD
57 f1of 1D:11-1 ontoD1D:1D
58 56 57 syl φ1D:1D
59 7 snssd φD
60 58 59 fssd φ1D:1
61 1z 1
62 fzsn 111=1
63 61 62 ax-mp 11=1
64 63 feq2i 1D:111D:1
65 60 64 sylibr φ1D:11
66 nnex V
67 ovex 11V
68 66 67 elmap 1D111D:11
69 65 68 sylibr φ1D11
70 6 3 nnaddcld φA+W
71 70 adantr φm0K1A+W
72 elfznn0 m0K1m0
73 7 nnnn0d φD0
74 nn0mulcl m0D0mD0
75 72 73 74 syl2anr φm0K1mD0
76 nnnn0addcl A+WmD0A+W+mD
77 71 75 76 syl2anc φm0K1A+W+mD
78 nnuz =1
79 77 78 eleqtrdi φm0K1A+W+mD1
80 8 adantr φm0K1AAPKDG-1C
81 eqid A+mD=A+mD
82 oveq1 n=mnD=mD
83 82 oveq2d n=mA+nD=A+mD
84 83 rspceeqv m0K1A+mD=A+mDn0K1A+mD=A+nD
85 81 84 mpan2 m0K1n0K1A+mD=A+nD
86 35 nnnn0d φK0
87 vdwapval K0ADA+mDAAPKDn0K1A+mD=A+nD
88 86 6 7 87 syl3anc φA+mDAAPKDn0K1A+mD=A+nD
89 88 biimpar φn0K1A+mD=A+nDA+mDAAPKD
90 85 89 sylan2 φm0K1A+mDAAPKD
91 80 90 sseldd φm0K1A+mDG-1C
92 23 9 fnmpti GFn1W
93 fniniseg GFn1WA+mDG-1CA+mD1WGA+mD=C
94 92 93 ax-mp A+mDG-1CA+mD1WGA+mD=C
95 91 94 sylib φm0K1A+mD1WGA+mD=C
96 95 simpld φm0K1A+mD1W
97 elfzuz3 A+mD1WWA+mD
98 eluzelz WA+mDW
99 eluzadd WA+mDWW+WA+mD+W
100 98 99 mpdan WA+mDW+WA+mD+W
101 96 97 100 3syl φm0K1W+WA+mD+W
102 14 2timesd φ2W=W+W
103 102 adantr φm0K12W=W+W
104 10 adantr φm0K1A
105 14 adantr φm0K1W
106 75 nn0cnd φm0K1mD
107 104 105 106 add32d φm0K1A+W+mD=A+mD+W
108 107 fveq2d φm0K1A+W+mD=A+mD+W
109 101 103 108 3eltr4d φm0K12WA+W+mD
110 elfzuzb A+W+mD12WA+W+mD12WA+W+mD
111 79 109 110 sylanbrc φm0K1A+W+mD12W
112 107 fveq2d φm0K1FA+W+mD=FA+mD+W
113 fvoveq1 x=A+mDFx+W=FA+mD+W
114 fvex FA+mD+WV
115 113 9 114 fvmpt A+mD1WGA+mD=FA+mD+W
116 96 115 syl φm0K1GA+mD=FA+mD+W
117 95 simprd φm0K1GA+mD=C
118 112 116 117 3eqtr2d φm0K1FA+W+mD=C
119 111 118 jca φm0K1A+W+mD12WFA+W+mD=C
120 eleq1 x=A+W+mDx12WA+W+mD12W
121 fveqeq2 x=A+W+mDFx=CFA+W+mD=C
122 120 121 anbi12d x=A+W+mDx12WFx=CA+W+mD12WFA+W+mD=C
123 119 122 syl5ibrcom φm0K1x=A+W+mDx12WFx=C
124 123 rexlimdva φm0K1x=A+W+mDx12WFx=C
125 vdwapval K0A+WDxA+WAPKDm0K1x=A+W+mD
126 86 70 7 125 syl3anc φxA+WAPKDm0K1x=A+W+mD
127 ffn F:12WRFFn12W
128 fniniseg FFn12WxF-1Cx12WFx=C
129 4 127 128 3syl φxF-1Cx12WFx=C
130 124 126 129 3imtr4d φxA+WAPKDxF-1C
131 130 ssrdv φA+WAPKDF-1C
132 fvsng 1D1D1=D
133 54 7 132 sylancr φ1D1=D
134 133 oveq2d φA+WD+1D1=A+WD+D
135 10 18 11 addassd φA+WD+D=A+WD+D
136 14 11 npcand φW-D+D=W
137 136 oveq2d φA+WD+D=A+W
138 134 135 137 3eqtrd φA+WD+1D1=A+W
139 138 133 oveq12d φA+WD+1D1APK1D1=A+WAPKD
140 138 fveq2d φFA+WD+1D1=FA+W
141 vdwapid1 KADAAAPKD
142 35 6 7 141 syl3anc φAAAPKD
143 8 142 sseldd φAG-1C
144 fniniseg GFn1WAG-1CA1WGA=C
145 92 144 ax-mp AG-1CA1WGA=C
146 143 145 sylib φA1WGA=C
147 146 simpld φA1W
148 fvoveq1 x=AFx+W=FA+W
149 fvex FA+WV
150 148 9 149 fvmpt A1WGA=FA+W
151 147 150 syl φGA=FA+W
152 146 simprd φGA=C
153 140 151 152 3eqtr2d φFA+WD+1D1=C
154 153 sneqd φFA+WD+1D1=C
155 154 imaeq2d φF-1FA+WD+1D1=F-1C
156 131 139 155 3sstr4d φA+WD+1D1APK1D1F-1FA+WD+1D1
157 156 ralrimivw φi11A+WD+1D1APK1D1F-1FA+WD+1D1
158 153 mpteq2dv φi11FA+WD+1D1=i11C
159 fconstmpt 11×C=i11C
160 158 159 eqtr4di φi11FA+WD+1D1=11×C
161 160 rneqd φrani11FA+WD+1D1=ran11×C
162 elfz3 1111
163 ne0i 11111
164 61 162 163 mp2b 11
165 rnxp 11ran11×C=C
166 164 165 ax-mp ran11×C=C
167 161 166 eqtrdi φrani11FA+WD+1D1=C
168 167 fveq2d φrani11FA+WD+1D1=C
169 hashsng CVC=1
170 5 169 ax-mp C=1
171 168 170 eqtrdi φrani11FA+WD+1D1=1
172 oveq1 a=A+W-Da+di=A+WD+di
173 172 oveq1d a=A+W-Da+diAPKdi=A+WD+diAPKdi
174 fvoveq1 a=A+W-DFa+di=FA+WD+di
175 174 sneqd a=A+W-DFa+di=FA+WD+di
176 175 imaeq2d a=A+W-DF-1Fa+di=F-1FA+WD+di
177 173 176 sseq12d a=A+W-Da+diAPKdiF-1Fa+diA+WD+diAPKdiF-1FA+WD+di
178 177 ralbidv a=A+W-Di11a+diAPKdiF-1Fa+dii11A+WD+diAPKdiF-1FA+WD+di
179 174 mpteq2dv a=A+W-Di11Fa+di=i11FA+WD+di
180 179 rneqd a=A+W-Drani11Fa+di=rani11FA+WD+di
181 180 fveqeq2d a=A+W-Drani11Fa+di=1rani11FA+WD+di=1
182 178 181 anbi12d a=A+W-Di11a+diAPKdiF-1Fa+dirani11Fa+di=1i11A+WD+diAPKdiF-1FA+WD+dirani11FA+WD+di=1
183 fveq1 d=1Ddi=1Di
184 elfz1eq i11i=1
185 184 fveq2d i111Di=1D1
186 183 185 sylan9eq d=1Di11di=1D1
187 186 oveq2d d=1Di11A+WD+di=A+WD+1D1
188 187 186 oveq12d d=1Di11A+WD+diAPKdi=A+WD+1D1APK1D1
189 187 fveq2d d=1Di11FA+WD+di=FA+WD+1D1
190 189 sneqd d=1Di11FA+WD+di=FA+WD+1D1
191 190 imaeq2d d=1Di11F-1FA+WD+di=F-1FA+WD+1D1
192 188 191 sseq12d d=1Di11A+WD+diAPKdiF-1FA+WD+diA+WD+1D1APK1D1F-1FA+WD+1D1
193 192 ralbidva d=1Di11A+WD+diAPKdiF-1FA+WD+dii11A+WD+1D1APK1D1F-1FA+WD+1D1
194 189 mpteq2dva d=1Di11FA+WD+di=i11FA+WD+1D1
195 194 rneqd d=1Drani11FA+WD+di=rani11FA+WD+1D1
196 195 fveqeq2d d=1Drani11FA+WD+di=1rani11FA+WD+1D1=1
197 193 196 anbi12d d=1Di11A+WD+diAPKdiF-1FA+WD+dirani11FA+WD+di=1i11A+WD+1D1APK1D1F-1FA+WD+1D1rani11FA+WD+1D1=1
198 182 197 rspc2ev A+W-D1D11i11A+WD+1D1APK1D1F-1FA+WD+1D1rani11FA+WD+1D1=1ad11i11a+diAPKdiF-1Fa+dirani11Fa+di=1
199 53 69 157 171 198 syl112anc φad11i11a+diAPKdiF-1Fa+dirani11Fa+di=1
200 ovex 12WV
201 54 a1i φ1
202 eqid 11=11
203 200 86 4 201 202 vdwpc φ1KPolyAPFad11i11a+diAPKdiF-1Fa+dirani11Fa+di=1
204 199 203 mpbird φ1KPolyAPF