Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem8.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwlem8.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
vdwlem8.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
4 |
|
vdwlem8.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( 2 · 𝑊 ) ) ⟶ 𝑅 ) |
5 |
|
vdwlem8.c |
⊢ 𝐶 ∈ V |
6 |
|
vdwlem8.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
7 |
|
vdwlem8.d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
8 |
|
vdwlem8.s |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐺 “ { 𝐶 } ) ) |
9 |
|
vdwlem8.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 + 𝑊 ) ) ) |
10 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
7
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
12 |
10 11
|
addcomd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) = ( 𝐷 + 𝐴 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 − ( 𝐴 + 𝐷 ) ) = ( 𝑊 − ( 𝐷 + 𝐴 ) ) ) |
14 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑊 ∈ ℂ ) |
15 |
14 11 10
|
subsub4d |
⊢ ( 𝜑 → ( ( 𝑊 − 𝐷 ) − 𝐴 ) = ( 𝑊 − ( 𝐷 + 𝐴 ) ) ) |
16 |
13 15
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑊 − ( 𝐴 + 𝐷 ) ) = ( ( 𝑊 − 𝐷 ) − 𝐴 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + ( 𝑊 − ( 𝐴 + 𝐷 ) ) ) = ( ( 𝐴 + 𝐴 ) + ( ( 𝑊 − 𝐷 ) − 𝐴 ) ) ) |
18 |
14 11
|
subcld |
⊢ ( 𝜑 → ( 𝑊 − 𝐷 ) ∈ ℂ ) |
19 |
10 10 18
|
ppncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + ( ( 𝑊 − 𝐷 ) − 𝐴 ) ) = ( 𝐴 + ( 𝑊 − 𝐷 ) ) ) |
20 |
17 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + ( 𝑊 − ( 𝐴 + 𝐷 ) ) ) = ( 𝐴 + ( 𝑊 − 𝐷 ) ) ) |
21 |
6 6
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐴 ) ∈ ℕ ) |
22 |
|
cnvimass |
⊢ ( ◡ 𝐺 “ { 𝐶 } ) ⊆ dom 𝐺 |
23 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑥 + 𝑊 ) ) ∈ V |
24 |
23 9
|
dmmpti |
⊢ dom 𝐺 = ( 1 ... 𝑊 ) |
25 |
22 24
|
sseqtri |
⊢ ( ◡ 𝐺 “ { 𝐶 } ) ⊆ ( 1 ... 𝑊 ) |
26 |
8 25
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( 1 ... 𝑊 ) ) |
27 |
|
ssun2 |
⊢ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ⊆ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
28 |
|
uz2m1nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐾 − 1 ) ∈ ℕ ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ ) |
30 |
6 7
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ℕ ) |
31 |
|
vdwapid1 |
⊢ ( ( ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝐴 + 𝐷 ) ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
32 |
29 30 7 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) |
33 |
27 32
|
sselid |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
34 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
35 |
2 34
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
36 |
35
|
nncnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
37 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
38 |
|
npcan |
⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
39 |
36 37 38
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) = ( AP ‘ 𝐾 ) ) |
41 |
40
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
42 |
29
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
43 |
|
vdwapun |
⊢ ( ( ( 𝐾 − 1 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
44 |
42 6 7 43
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( ( 𝐾 − 1 ) + 1 ) ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
45 |
41 44
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) = ( { 𝐴 } ∪ ( ( 𝐴 + 𝐷 ) ( AP ‘ ( 𝐾 − 1 ) ) 𝐷 ) ) ) |
46 |
33 45
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
47 |
26 46
|
sseldd |
⊢ ( 𝜑 → ( 𝐴 + 𝐷 ) ∈ ( 1 ... 𝑊 ) ) |
48 |
|
elfzuz3 |
⊢ ( ( 𝐴 + 𝐷 ) ∈ ( 1 ... 𝑊 ) → 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + 𝐷 ) ) ) |
49 |
|
uznn0sub |
⊢ ( 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + 𝐷 ) ) → ( 𝑊 − ( 𝐴 + 𝐷 ) ) ∈ ℕ0 ) |
50 |
47 48 49
|
3syl |
⊢ ( 𝜑 → ( 𝑊 − ( 𝐴 + 𝐷 ) ) ∈ ℕ0 ) |
51 |
|
nnnn0addcl |
⊢ ( ( ( 𝐴 + 𝐴 ) ∈ ℕ ∧ ( 𝑊 − ( 𝐴 + 𝐷 ) ) ∈ ℕ0 ) → ( ( 𝐴 + 𝐴 ) + ( 𝑊 − ( 𝐴 + 𝐷 ) ) ) ∈ ℕ ) |
52 |
21 50 51
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐴 ) + ( 𝑊 − ( 𝐴 + 𝐷 ) ) ) ∈ ℕ ) |
53 |
20 52
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 + ( 𝑊 − 𝐷 ) ) ∈ ℕ ) |
54 |
|
1nn |
⊢ 1 ∈ ℕ |
55 |
|
f1osng |
⊢ ( ( 1 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → { 〈 1 , 𝐷 〉 } : { 1 } –1-1-onto→ { 𝐷 } ) |
56 |
54 7 55
|
sylancr |
⊢ ( 𝜑 → { 〈 1 , 𝐷 〉 } : { 1 } –1-1-onto→ { 𝐷 } ) |
57 |
|
f1of |
⊢ ( { 〈 1 , 𝐷 〉 } : { 1 } –1-1-onto→ { 𝐷 } → { 〈 1 , 𝐷 〉 } : { 1 } ⟶ { 𝐷 } ) |
58 |
56 57
|
syl |
⊢ ( 𝜑 → { 〈 1 , 𝐷 〉 } : { 1 } ⟶ { 𝐷 } ) |
59 |
7
|
snssd |
⊢ ( 𝜑 → { 𝐷 } ⊆ ℕ ) |
60 |
58 59
|
fssd |
⊢ ( 𝜑 → { 〈 1 , 𝐷 〉 } : { 1 } ⟶ ℕ ) |
61 |
|
1z |
⊢ 1 ∈ ℤ |
62 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
63 |
61 62
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
64 |
63
|
feq2i |
⊢ ( { 〈 1 , 𝐷 〉 } : ( 1 ... 1 ) ⟶ ℕ ↔ { 〈 1 , 𝐷 〉 } : { 1 } ⟶ ℕ ) |
65 |
60 64
|
sylibr |
⊢ ( 𝜑 → { 〈 1 , 𝐷 〉 } : ( 1 ... 1 ) ⟶ ℕ ) |
66 |
|
nnex |
⊢ ℕ ∈ V |
67 |
|
ovex |
⊢ ( 1 ... 1 ) ∈ V |
68 |
66 67
|
elmap |
⊢ ( { 〈 1 , 𝐷 〉 } ∈ ( ℕ ↑m ( 1 ... 1 ) ) ↔ { 〈 1 , 𝐷 〉 } : ( 1 ... 1 ) ⟶ ℕ ) |
69 |
65 68
|
sylibr |
⊢ ( 𝜑 → { 〈 1 , 𝐷 〉 } ∈ ( ℕ ↑m ( 1 ... 1 ) ) ) |
70 |
6 3
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑊 ) ∈ ℕ ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + 𝑊 ) ∈ ℕ ) |
72 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
73 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
74 |
|
nn0mulcl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ) → ( 𝑚 · 𝐷 ) ∈ ℕ0 ) |
75 |
72 73 74
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝐷 ) ∈ ℕ0 ) |
76 |
|
nnnn0addcl |
⊢ ( ( ( 𝐴 + 𝑊 ) ∈ ℕ ∧ ( 𝑚 · 𝐷 ) ∈ ℕ0 ) → ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ℕ ) |
77 |
71 75 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ℕ ) |
78 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
79 |
77 78
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
80 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐺 “ { 𝐶 } ) ) |
81 |
|
eqid |
⊢ ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) |
82 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝐷 ) = ( 𝑚 · 𝐷 ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 + ( 𝑛 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) |
84 |
83
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) |
85 |
81 84
|
mpan2 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) |
86 |
35
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
87 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) ) |
88 |
86 6 7 87
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) ) |
89 |
88
|
biimpar |
⊢ ( ( 𝜑 ∧ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝑚 · 𝐷 ) ) = ( 𝐴 + ( 𝑛 · 𝐷 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
90 |
85 89
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
91 |
80 90
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐺 “ { 𝐶 } ) ) |
92 |
23 9
|
fnmpti |
⊢ 𝐺 Fn ( 1 ... 𝑊 ) |
93 |
|
fniniseg |
⊢ ( 𝐺 Fn ( 1 ... 𝑊 ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) ) |
94 |
92 93
|
ax-mp |
⊢ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) |
95 |
91 94
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) |
96 |
95
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) ) |
97 |
|
elfzuz3 |
⊢ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) → 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ) |
98 |
|
eluzelz |
⊢ ( 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) → 𝑊 ∈ ℤ ) |
99 |
|
eluzadd |
⊢ ( ( 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) ∧ 𝑊 ∈ ℤ ) → ( 𝑊 + 𝑊 ) ∈ ( ℤ≥ ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
100 |
98 99
|
mpdan |
⊢ ( 𝑊 ∈ ( ℤ≥ ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) → ( 𝑊 + 𝑊 ) ∈ ( ℤ≥ ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
101 |
96 97 100
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑊 + 𝑊 ) ∈ ( ℤ≥ ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
102 |
14
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑊 ) = ( 𝑊 + 𝑊 ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 2 · 𝑊 ) = ( 𝑊 + 𝑊 ) ) |
104 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
105 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑊 ∈ ℂ ) |
106 |
75
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝐷 ) ∈ ℂ ) |
107 |
104 105 106
|
add32d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) = ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) |
108 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ℤ≥ ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = ( ℤ≥ ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
109 |
101 103 108
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 2 · 𝑊 ) ∈ ( ℤ≥ ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) ) |
110 |
|
elfzuzb |
⊢ ( ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... ( 2 · 𝑊 ) ) ↔ ( ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 2 · 𝑊 ) ∈ ( ℤ≥ ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) ) ) |
111 |
79 109 110
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... ( 2 · 𝑊 ) ) ) |
112 |
107
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
113 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝐴 + ( 𝑚 · 𝐷 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑊 ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
114 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ∈ V |
115 |
113 9 114
|
fvmpt |
⊢ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... 𝑊 ) → ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
116 |
96 115
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑚 · 𝐷 ) ) + 𝑊 ) ) ) |
117 |
95
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝐴 + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) |
118 |
112 116 117
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) |
119 |
111 118
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) |
120 |
|
eleq1 |
⊢ ( 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) → ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ↔ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... ( 2 · 𝑊 ) ) ) ) |
121 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( 𝐹 ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) |
122 |
120 121
|
anbi12d |
⊢ ( 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) → ( ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ↔ ( ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) = 𝐶 ) ) ) |
123 |
119 122
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) → ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) ) |
124 |
123
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) → ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) ) |
125 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐴 + 𝑊 ) ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝐴 + 𝑊 ) ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) ) |
126 |
86 70 7 125
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑊 ) ( AP ‘ 𝐾 ) 𝐷 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝐴 + 𝑊 ) + ( 𝑚 · 𝐷 ) ) ) ) |
127 |
|
ffn |
⊢ ( 𝐹 : ( 1 ... ( 2 · 𝑊 ) ) ⟶ 𝑅 → 𝐹 Fn ( 1 ... ( 2 · 𝑊 ) ) ) |
128 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... ( 2 · 𝑊 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝐶 } ) ↔ ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) ) |
129 |
4 127 128
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝐶 } ) ↔ ( 𝑥 ∈ ( 1 ... ( 2 · 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐶 ) ) ) |
130 |
124 126 129
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 + 𝑊 ) ( AP ‘ 𝐾 ) 𝐷 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝐶 } ) ) ) |
131 |
130
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑊 ) ( AP ‘ 𝐾 ) 𝐷 ) ⊆ ( ◡ 𝐹 “ { 𝐶 } ) ) |
132 |
|
fvsng |
⊢ ( ( 1 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( { 〈 1 , 𝐷 〉 } ‘ 1 ) = 𝐷 ) |
133 |
54 7 132
|
sylancr |
⊢ ( 𝜑 → ( { 〈 1 , 𝐷 〉 } ‘ 1 ) = 𝐷 ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) = ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + 𝐷 ) ) |
135 |
10 18 11
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + 𝐷 ) = ( 𝐴 + ( ( 𝑊 − 𝐷 ) + 𝐷 ) ) ) |
136 |
14 11
|
npcand |
⊢ ( 𝜑 → ( ( 𝑊 − 𝐷 ) + 𝐷 ) = 𝑊 ) |
137 |
136
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 + ( ( 𝑊 − 𝐷 ) + 𝐷 ) ) = ( 𝐴 + 𝑊 ) ) |
138 |
134 135 137
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) = ( 𝐴 + 𝑊 ) ) |
139 |
138 133
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) = ( ( 𝐴 + 𝑊 ) ( AP ‘ 𝐾 ) 𝐷 ) ) |
140 |
138
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) = ( 𝐹 ‘ ( 𝐴 + 𝑊 ) ) ) |
141 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
142 |
35 6 7 141
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 ( AP ‘ 𝐾 ) 𝐷 ) ) |
143 |
8 142
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ) |
144 |
|
fniniseg |
⊢ ( 𝐺 Fn ( 1 ... 𝑊 ) → ( 𝐴 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ 𝐴 ) = 𝐶 ) ) ) |
145 |
92 144
|
ax-mp |
⊢ ( 𝐴 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ 𝐴 ) = 𝐶 ) ) |
146 |
143 145
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ 𝐴 ) = 𝐶 ) ) |
147 |
146
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑊 ) ) |
148 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ ( 𝑥 + 𝑊 ) ) = ( 𝐹 ‘ ( 𝐴 + 𝑊 ) ) ) |
149 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝐴 + 𝑊 ) ) ∈ V |
150 |
148 9 149
|
fvmpt |
⊢ ( 𝐴 ∈ ( 1 ... 𝑊 ) → ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐴 + 𝑊 ) ) ) |
151 |
147 150
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐴 + 𝑊 ) ) ) |
152 |
146
|
simprd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 𝐶 ) |
153 |
140 151 152
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) = 𝐶 ) |
154 |
153
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } = { 𝐶 } ) |
155 |
154
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) = ( ◡ 𝐹 “ { 𝐶 } ) ) |
156 |
131 139 155
|
3sstr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ) |
157 |
156
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ) |
158 |
153
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) = ( 𝑖 ∈ ( 1 ... 1 ) ↦ 𝐶 ) ) |
159 |
|
fconstmpt |
⊢ ( ( 1 ... 1 ) × { 𝐶 } ) = ( 𝑖 ∈ ( 1 ... 1 ) ↦ 𝐶 ) |
160 |
158 159
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) = ( ( 1 ... 1 ) × { 𝐶 } ) ) |
161 |
160
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) = ran ( ( 1 ... 1 ) × { 𝐶 } ) ) |
162 |
|
elfz3 |
⊢ ( 1 ∈ ℤ → 1 ∈ ( 1 ... 1 ) ) |
163 |
|
ne0i |
⊢ ( 1 ∈ ( 1 ... 1 ) → ( 1 ... 1 ) ≠ ∅ ) |
164 |
61 162 163
|
mp2b |
⊢ ( 1 ... 1 ) ≠ ∅ |
165 |
|
rnxp |
⊢ ( ( 1 ... 1 ) ≠ ∅ → ran ( ( 1 ... 1 ) × { 𝐶 } ) = { 𝐶 } ) |
166 |
164 165
|
ax-mp |
⊢ ran ( ( 1 ... 1 ) × { 𝐶 } ) = { 𝐶 } |
167 |
161 166
|
eqtrdi |
⊢ ( 𝜑 → ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) = { 𝐶 } ) |
168 |
167
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) = ( ♯ ‘ { 𝐶 } ) ) |
169 |
|
hashsng |
⊢ ( 𝐶 ∈ V → ( ♯ ‘ { 𝐶 } ) = 1 ) |
170 |
5 169
|
ax-mp |
⊢ ( ♯ ‘ { 𝐶 } ) = 1 |
171 |
168 170
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) = 1 ) |
172 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) |
173 |
172
|
oveq1d |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ) |
174 |
|
fvoveq1 |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) |
175 |
174
|
sneqd |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) |
176 |
175
|
imaeq2d |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) |
177 |
173 176
|
sseq12d |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
178 |
177
|
ralbidv |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ) ) |
179 |
174
|
mpteq2dv |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
180 |
179
|
rneqd |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) |
181 |
180
|
fveqeq2d |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ↔ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ) |
182 |
178 181
|
anbi12d |
⊢ ( 𝑎 = ( 𝐴 + ( 𝑊 − 𝐷 ) ) → ( ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ↔ ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ) ) |
183 |
|
fveq1 |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ( 𝑑 ‘ 𝑖 ) = ( { 〈 1 , 𝐷 〉 } ‘ 𝑖 ) ) |
184 |
|
elfz1eq |
⊢ ( 𝑖 ∈ ( 1 ... 1 ) → 𝑖 = 1 ) |
185 |
184
|
fveq2d |
⊢ ( 𝑖 ∈ ( 1 ... 1 ) → ( { 〈 1 , 𝐷 〉 } ‘ 𝑖 ) = ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) |
186 |
183 185
|
sylan9eq |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( 𝑑 ‘ 𝑖 ) = ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) |
187 |
186
|
oveq2d |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) |
188 |
187 186
|
oveq12d |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) = ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) |
189 |
187
|
fveq2d |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) |
190 |
189
|
sneqd |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } = { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) |
191 |
190
|
imaeq2d |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ) |
192 |
188 191
|
sseq12d |
⊢ ( ( 𝑑 = { 〈 1 , 𝐷 〉 } ∧ 𝑖 ∈ ( 1 ... 1 ) ) → ( ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ) ) |
193 |
192
|
ralbidva |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ↔ ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ) ) |
194 |
189
|
mpteq2dva |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) |
195 |
194
|
rneqd |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) = ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) |
196 |
195
|
fveqeq2d |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ( ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ↔ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) = 1 ) ) |
197 |
193 196
|
anbi12d |
⊢ ( 𝑑 = { 〈 1 , 𝐷 〉 } → ( ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ↔ ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) = 1 ) ) ) |
198 |
182 197
|
rspc2ev |
⊢ ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) ∈ ℕ ∧ { 〈 1 , 𝐷 〉 } ∈ ( ℕ ↑m ( 1 ... 1 ) ) ∧ ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ( AP ‘ 𝐾 ) ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( ( 𝐴 + ( 𝑊 − 𝐷 ) ) + ( { 〈 1 , 𝐷 〉 } ‘ 1 ) ) ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 1 ) ) ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ) |
199 |
53 69 157 171 198
|
syl112anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 1 ) ) ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ) |
200 |
|
ovex |
⊢ ( 1 ... ( 2 · 𝑊 ) ) ∈ V |
201 |
54
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
202 |
|
eqid |
⊢ ( 1 ... 1 ) = ( 1 ... 1 ) |
203 |
200 86 4 201 202
|
vdwpc |
⊢ ( 𝜑 → ( 〈 1 , 𝐾 〉 PolyAP 𝐹 ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ( ℕ ↑m ( 1 ... 1 ) ) ( ∀ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) } ) ∧ ( ♯ ‘ ran ( 𝑖 ∈ ( 1 ... 1 ) ↦ ( 𝐹 ‘ ( 𝑎 + ( 𝑑 ‘ 𝑖 ) ) ) ) ) = 1 ) ) ) |
204 |
199 203
|
mpbird |
⊢ ( 𝜑 → 〈 1 , 𝐾 〉 PolyAP 𝐹 ) |