Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem8.r |
|- ( ph -> R e. Fin ) |
2 |
|
vdwlem8.k |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
3 |
|
vdwlem8.w |
|- ( ph -> W e. NN ) |
4 |
|
vdwlem8.f |
|- ( ph -> F : ( 1 ... ( 2 x. W ) ) --> R ) |
5 |
|
vdwlem8.c |
|- C e. _V |
6 |
|
vdwlem8.a |
|- ( ph -> A e. NN ) |
7 |
|
vdwlem8.d |
|- ( ph -> D e. NN ) |
8 |
|
vdwlem8.s |
|- ( ph -> ( A ( AP ` K ) D ) C_ ( `' G " { C } ) ) |
9 |
|
vdwlem8.g |
|- G = ( x e. ( 1 ... W ) |-> ( F ` ( x + W ) ) ) |
10 |
6
|
nncnd |
|- ( ph -> A e. CC ) |
11 |
7
|
nncnd |
|- ( ph -> D e. CC ) |
12 |
10 11
|
addcomd |
|- ( ph -> ( A + D ) = ( D + A ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( W - ( A + D ) ) = ( W - ( D + A ) ) ) |
14 |
3
|
nncnd |
|- ( ph -> W e. CC ) |
15 |
14 11 10
|
subsub4d |
|- ( ph -> ( ( W - D ) - A ) = ( W - ( D + A ) ) ) |
16 |
13 15
|
eqtr4d |
|- ( ph -> ( W - ( A + D ) ) = ( ( W - D ) - A ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) = ( ( A + A ) + ( ( W - D ) - A ) ) ) |
18 |
14 11
|
subcld |
|- ( ph -> ( W - D ) e. CC ) |
19 |
10 10 18
|
ppncand |
|- ( ph -> ( ( A + A ) + ( ( W - D ) - A ) ) = ( A + ( W - D ) ) ) |
20 |
17 19
|
eqtrd |
|- ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) = ( A + ( W - D ) ) ) |
21 |
6 6
|
nnaddcld |
|- ( ph -> ( A + A ) e. NN ) |
22 |
|
cnvimass |
|- ( `' G " { C } ) C_ dom G |
23 |
|
fvex |
|- ( F ` ( x + W ) ) e. _V |
24 |
23 9
|
dmmpti |
|- dom G = ( 1 ... W ) |
25 |
22 24
|
sseqtri |
|- ( `' G " { C } ) C_ ( 1 ... W ) |
26 |
8 25
|
sstrdi |
|- ( ph -> ( A ( AP ` K ) D ) C_ ( 1 ... W ) ) |
27 |
|
ssun2 |
|- ( ( A + D ) ( AP ` ( K - 1 ) ) D ) C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) |
28 |
|
uz2m1nn |
|- ( K e. ( ZZ>= ` 2 ) -> ( K - 1 ) e. NN ) |
29 |
2 28
|
syl |
|- ( ph -> ( K - 1 ) e. NN ) |
30 |
6 7
|
nnaddcld |
|- ( ph -> ( A + D ) e. NN ) |
31 |
|
vdwapid1 |
|- ( ( ( K - 1 ) e. NN /\ ( A + D ) e. NN /\ D e. NN ) -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) |
32 |
29 30 7 31
|
syl3anc |
|- ( ph -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) |
33 |
27 32
|
sselid |
|- ( ph -> ( A + D ) e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
34 |
|
eluz2nn |
|- ( K e. ( ZZ>= ` 2 ) -> K e. NN ) |
35 |
2 34
|
syl |
|- ( ph -> K e. NN ) |
36 |
35
|
nncnd |
|- ( ph -> K e. CC ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
39 |
36 37 38
|
sylancl |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
40 |
39
|
fveq2d |
|- ( ph -> ( AP ` ( ( K - 1 ) + 1 ) ) = ( AP ` K ) ) |
41 |
40
|
oveqd |
|- ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( A ( AP ` K ) D ) ) |
42 |
29
|
nnnn0d |
|- ( ph -> ( K - 1 ) e. NN0 ) |
43 |
|
vdwapun |
|- ( ( ( K - 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
44 |
42 6 7 43
|
syl3anc |
|- ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
45 |
41 44
|
eqtr3d |
|- ( ph -> ( A ( AP ` K ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) |
46 |
33 45
|
eleqtrrd |
|- ( ph -> ( A + D ) e. ( A ( AP ` K ) D ) ) |
47 |
26 46
|
sseldd |
|- ( ph -> ( A + D ) e. ( 1 ... W ) ) |
48 |
|
elfzuz3 |
|- ( ( A + D ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( A + D ) ) ) |
49 |
|
uznn0sub |
|- ( W e. ( ZZ>= ` ( A + D ) ) -> ( W - ( A + D ) ) e. NN0 ) |
50 |
47 48 49
|
3syl |
|- ( ph -> ( W - ( A + D ) ) e. NN0 ) |
51 |
|
nnnn0addcl |
|- ( ( ( A + A ) e. NN /\ ( W - ( A + D ) ) e. NN0 ) -> ( ( A + A ) + ( W - ( A + D ) ) ) e. NN ) |
52 |
21 50 51
|
syl2anc |
|- ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) e. NN ) |
53 |
20 52
|
eqeltrrd |
|- ( ph -> ( A + ( W - D ) ) e. NN ) |
54 |
|
1nn |
|- 1 e. NN |
55 |
|
f1osng |
|- ( ( 1 e. NN /\ D e. NN ) -> { <. 1 , D >. } : { 1 } -1-1-onto-> { D } ) |
56 |
54 7 55
|
sylancr |
|- ( ph -> { <. 1 , D >. } : { 1 } -1-1-onto-> { D } ) |
57 |
|
f1of |
|- ( { <. 1 , D >. } : { 1 } -1-1-onto-> { D } -> { <. 1 , D >. } : { 1 } --> { D } ) |
58 |
56 57
|
syl |
|- ( ph -> { <. 1 , D >. } : { 1 } --> { D } ) |
59 |
7
|
snssd |
|- ( ph -> { D } C_ NN ) |
60 |
58 59
|
fssd |
|- ( ph -> { <. 1 , D >. } : { 1 } --> NN ) |
61 |
|
1z |
|- 1 e. ZZ |
62 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
63 |
61 62
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
64 |
63
|
feq2i |
|- ( { <. 1 , D >. } : ( 1 ... 1 ) --> NN <-> { <. 1 , D >. } : { 1 } --> NN ) |
65 |
60 64
|
sylibr |
|- ( ph -> { <. 1 , D >. } : ( 1 ... 1 ) --> NN ) |
66 |
|
nnex |
|- NN e. _V |
67 |
|
ovex |
|- ( 1 ... 1 ) e. _V |
68 |
66 67
|
elmap |
|- ( { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) <-> { <. 1 , D >. } : ( 1 ... 1 ) --> NN ) |
69 |
65 68
|
sylibr |
|- ( ph -> { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) ) |
70 |
6 3
|
nnaddcld |
|- ( ph -> ( A + W ) e. NN ) |
71 |
70
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + W ) e. NN ) |
72 |
|
elfznn0 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) |
73 |
7
|
nnnn0d |
|- ( ph -> D e. NN0 ) |
74 |
|
nn0mulcl |
|- ( ( m e. NN0 /\ D e. NN0 ) -> ( m x. D ) e. NN0 ) |
75 |
72 73 74
|
syl2anr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. NN0 ) |
76 |
|
nnnn0addcl |
|- ( ( ( A + W ) e. NN /\ ( m x. D ) e. NN0 ) -> ( ( A + W ) + ( m x. D ) ) e. NN ) |
77 |
71 75 76
|
syl2anc |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. NN ) |
78 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
79 |
77 78
|
eleqtrdi |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. ( ZZ>= ` 1 ) ) |
80 |
8
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A ( AP ` K ) D ) C_ ( `' G " { C } ) ) |
81 |
|
eqid |
|- ( A + ( m x. D ) ) = ( A + ( m x. D ) ) |
82 |
|
oveq1 |
|- ( n = m -> ( n x. D ) = ( m x. D ) ) |
83 |
82
|
oveq2d |
|- ( n = m -> ( A + ( n x. D ) ) = ( A + ( m x. D ) ) ) |
84 |
83
|
rspceeqv |
|- ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( A + ( m x. D ) ) = ( A + ( m x. D ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) |
85 |
81 84
|
mpan2 |
|- ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) |
86 |
35
|
nnnn0d |
|- ( ph -> K e. NN0 ) |
87 |
|
vdwapval |
|- ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
88 |
86 6 7 87
|
syl3anc |
|- ( ph -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) |
89 |
88
|
biimpar |
|- ( ( ph /\ E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) |
90 |
85 89
|
sylan2 |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) |
91 |
80 90
|
sseldd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( `' G " { C } ) ) |
92 |
23 9
|
fnmpti |
|- G Fn ( 1 ... W ) |
93 |
|
fniniseg |
|- ( G Fn ( 1 ... W ) -> ( ( A + ( m x. D ) ) e. ( `' G " { C } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) ) |
94 |
92 93
|
ax-mp |
|- ( ( A + ( m x. D ) ) e. ( `' G " { C } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) |
95 |
91 94
|
sylib |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) |
96 |
95
|
simpld |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... W ) ) |
97 |
|
elfzuz3 |
|- ( ( A + ( m x. D ) ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( A + ( m x. D ) ) ) ) |
98 |
|
eluzelz |
|- ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) -> W e. ZZ ) |
99 |
|
eluzadd |
|- ( ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) /\ W e. ZZ ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) |
100 |
98 99
|
mpdan |
|- ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) |
101 |
96 97 100
|
3syl |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) |
102 |
14
|
2timesd |
|- ( ph -> ( 2 x. W ) = ( W + W ) ) |
103 |
102
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 2 x. W ) = ( W + W ) ) |
104 |
10
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) |
105 |
14
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. CC ) |
106 |
75
|
nn0cnd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) |
107 |
104 105 106
|
add32d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) = ( ( A + ( m x. D ) ) + W ) ) |
108 |
107
|
fveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) = ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) |
109 |
101 103 108
|
3eltr4d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 2 x. W ) e. ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) ) |
110 |
|
elfzuzb |
|- ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) <-> ( ( ( A + W ) + ( m x. D ) ) e. ( ZZ>= ` 1 ) /\ ( 2 x. W ) e. ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) ) ) |
111 |
79 109 110
|
sylanbrc |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) ) |
112 |
107
|
fveq2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( A + W ) + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) |
113 |
|
fvoveq1 |
|- ( x = ( A + ( m x. D ) ) -> ( F ` ( x + W ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) |
114 |
|
fvex |
|- ( F ` ( ( A + ( m x. D ) ) + W ) ) e. _V |
115 |
113 9 114
|
fvmpt |
|- ( ( A + ( m x. D ) ) e. ( 1 ... W ) -> ( G ` ( A + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) |
116 |
96 115
|
syl |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( A + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) |
117 |
95
|
simprd |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( A + ( m x. D ) ) ) = C ) |
118 |
112 116 117
|
3eqtr2d |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) |
119 |
111 118
|
jca |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) /\ ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) |
120 |
|
eleq1 |
|- ( x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) <-> ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) ) ) |
121 |
|
fveqeq2 |
|- ( x = ( ( A + W ) + ( m x. D ) ) -> ( ( F ` x ) = C <-> ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) |
122 |
120 121
|
anbi12d |
|- ( x = ( ( A + W ) + ( m x. D ) ) -> ( ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) <-> ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) /\ ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) ) |
123 |
119 122
|
syl5ibrcom |
|- ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) |
124 |
123
|
rexlimdva |
|- ( ph -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) |
125 |
|
vdwapval |
|- ( ( K e. NN0 /\ ( A + W ) e. NN /\ D e. NN ) -> ( x e. ( ( A + W ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) ) ) |
126 |
86 70 7 125
|
syl3anc |
|- ( ph -> ( x e. ( ( A + W ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) ) ) |
127 |
|
ffn |
|- ( F : ( 1 ... ( 2 x. W ) ) --> R -> F Fn ( 1 ... ( 2 x. W ) ) ) |
128 |
|
fniniseg |
|- ( F Fn ( 1 ... ( 2 x. W ) ) -> ( x e. ( `' F " { C } ) <-> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) |
129 |
4 127 128
|
3syl |
|- ( ph -> ( x e. ( `' F " { C } ) <-> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) |
130 |
124 126 129
|
3imtr4d |
|- ( ph -> ( x e. ( ( A + W ) ( AP ` K ) D ) -> x e. ( `' F " { C } ) ) ) |
131 |
130
|
ssrdv |
|- ( ph -> ( ( A + W ) ( AP ` K ) D ) C_ ( `' F " { C } ) ) |
132 |
|
fvsng |
|- ( ( 1 e. NN /\ D e. NN ) -> ( { <. 1 , D >. } ` 1 ) = D ) |
133 |
54 7 132
|
sylancr |
|- ( ph -> ( { <. 1 , D >. } ` 1 ) = D ) |
134 |
133
|
oveq2d |
|- ( ph -> ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) = ( ( A + ( W - D ) ) + D ) ) |
135 |
10 18 11
|
addassd |
|- ( ph -> ( ( A + ( W - D ) ) + D ) = ( A + ( ( W - D ) + D ) ) ) |
136 |
14 11
|
npcand |
|- ( ph -> ( ( W - D ) + D ) = W ) |
137 |
136
|
oveq2d |
|- ( ph -> ( A + ( ( W - D ) + D ) ) = ( A + W ) ) |
138 |
134 135 137
|
3eqtrd |
|- ( ph -> ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) = ( A + W ) ) |
139 |
138 133
|
oveq12d |
|- ( ph -> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) = ( ( A + W ) ( AP ` K ) D ) ) |
140 |
138
|
fveq2d |
|- ( ph -> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) = ( F ` ( A + W ) ) ) |
141 |
|
vdwapid1 |
|- ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) |
142 |
35 6 7 141
|
syl3anc |
|- ( ph -> A e. ( A ( AP ` K ) D ) ) |
143 |
8 142
|
sseldd |
|- ( ph -> A e. ( `' G " { C } ) ) |
144 |
|
fniniseg |
|- ( G Fn ( 1 ... W ) -> ( A e. ( `' G " { C } ) <-> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) ) |
145 |
92 144
|
ax-mp |
|- ( A e. ( `' G " { C } ) <-> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) |
146 |
143 145
|
sylib |
|- ( ph -> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) |
147 |
146
|
simpld |
|- ( ph -> A e. ( 1 ... W ) ) |
148 |
|
fvoveq1 |
|- ( x = A -> ( F ` ( x + W ) ) = ( F ` ( A + W ) ) ) |
149 |
|
fvex |
|- ( F ` ( A + W ) ) e. _V |
150 |
148 9 149
|
fvmpt |
|- ( A e. ( 1 ... W ) -> ( G ` A ) = ( F ` ( A + W ) ) ) |
151 |
147 150
|
syl |
|- ( ph -> ( G ` A ) = ( F ` ( A + W ) ) ) |
152 |
146
|
simprd |
|- ( ph -> ( G ` A ) = C ) |
153 |
140 151 152
|
3eqtr2d |
|- ( ph -> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) = C ) |
154 |
153
|
sneqd |
|- ( ph -> { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } = { C } ) |
155 |
154
|
imaeq2d |
|- ( ph -> ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) = ( `' F " { C } ) ) |
156 |
131 139 155
|
3sstr4d |
|- ( ph -> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) |
157 |
156
|
ralrimivw |
|- ( ph -> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) |
158 |
153
|
mpteq2dv |
|- ( ph -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ( i e. ( 1 ... 1 ) |-> C ) ) |
159 |
|
fconstmpt |
|- ( ( 1 ... 1 ) X. { C } ) = ( i e. ( 1 ... 1 ) |-> C ) |
160 |
158 159
|
eqtr4di |
|- ( ph -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ( ( 1 ... 1 ) X. { C } ) ) |
161 |
160
|
rneqd |
|- ( ph -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ran ( ( 1 ... 1 ) X. { C } ) ) |
162 |
|
elfz3 |
|- ( 1 e. ZZ -> 1 e. ( 1 ... 1 ) ) |
163 |
|
ne0i |
|- ( 1 e. ( 1 ... 1 ) -> ( 1 ... 1 ) =/= (/) ) |
164 |
61 162 163
|
mp2b |
|- ( 1 ... 1 ) =/= (/) |
165 |
|
rnxp |
|- ( ( 1 ... 1 ) =/= (/) -> ran ( ( 1 ... 1 ) X. { C } ) = { C } ) |
166 |
164 165
|
ax-mp |
|- ran ( ( 1 ... 1 ) X. { C } ) = { C } |
167 |
161 166
|
eqtrdi |
|- ( ph -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = { C } ) |
168 |
167
|
fveq2d |
|- ( ph -> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = ( # ` { C } ) ) |
169 |
|
hashsng |
|- ( C e. _V -> ( # ` { C } ) = 1 ) |
170 |
5 169
|
ax-mp |
|- ( # ` { C } ) = 1 |
171 |
168 170
|
eqtrdi |
|- ( ph -> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) |
172 |
|
oveq1 |
|- ( a = ( A + ( W - D ) ) -> ( a + ( d ` i ) ) = ( ( A + ( W - D ) ) + ( d ` i ) ) ) |
173 |
172
|
oveq1d |
|- ( a = ( A + ( W - D ) ) -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) |
174 |
|
fvoveq1 |
|- ( a = ( A + ( W - D ) ) -> ( F ` ( a + ( d ` i ) ) ) = ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) |
175 |
174
|
sneqd |
|- ( a = ( A + ( W - D ) ) -> { ( F ` ( a + ( d ` i ) ) ) } = { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) |
176 |
175
|
imaeq2d |
|- ( a = ( A + ( W - D ) ) -> ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) |
177 |
173 176
|
sseq12d |
|- ( a = ( A + ( W - D ) ) -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) <-> ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) ) |
178 |
177
|
ralbidv |
|- ( a = ( A + ( W - D ) ) -> ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) ) |
179 |
174
|
mpteq2dv |
|- ( a = ( A + ( W - D ) ) -> ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) = ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) |
180 |
179
|
rneqd |
|- ( a = ( A + ( W - D ) ) -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) |
181 |
180
|
fveqeq2d |
|- ( a = ( A + ( W - D ) ) -> ( ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 <-> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) ) |
182 |
178 181
|
anbi12d |
|- ( a = ( A + ( W - D ) ) -> ( ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) <-> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) ) ) |
183 |
|
fveq1 |
|- ( d = { <. 1 , D >. } -> ( d ` i ) = ( { <. 1 , D >. } ` i ) ) |
184 |
|
elfz1eq |
|- ( i e. ( 1 ... 1 ) -> i = 1 ) |
185 |
184
|
fveq2d |
|- ( i e. ( 1 ... 1 ) -> ( { <. 1 , D >. } ` i ) = ( { <. 1 , D >. } ` 1 ) ) |
186 |
183 185
|
sylan9eq |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( d ` i ) = ( { <. 1 , D >. } ` 1 ) ) |
187 |
186
|
oveq2d |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( A + ( W - D ) ) + ( d ` i ) ) = ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) |
188 |
187 186
|
oveq12d |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) ) |
189 |
187
|
fveq2d |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) = ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) |
190 |
189
|
sneqd |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } = { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) |
191 |
190
|
imaeq2d |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) |
192 |
188 191
|
sseq12d |
|- ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) <-> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) ) |
193 |
192
|
ralbidva |
|- ( d = { <. 1 , D >. } -> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) ) |
194 |
189
|
mpteq2dva |
|- ( d = { <. 1 , D >. } -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) = ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) |
195 |
194
|
rneqd |
|- ( d = { <. 1 , D >. } -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) |
196 |
195
|
fveqeq2d |
|- ( d = { <. 1 , D >. } -> ( ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 <-> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) |
197 |
193 196
|
anbi12d |
|- ( d = { <. 1 , D >. } -> ( ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) <-> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) ) |
198 |
182 197
|
rspc2ev |
|- ( ( ( A + ( W - D ) ) e. NN /\ { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) /\ ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) |
199 |
53 69 157 171 198
|
syl112anc |
|- ( ph -> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) |
200 |
|
ovex |
|- ( 1 ... ( 2 x. W ) ) e. _V |
201 |
54
|
a1i |
|- ( ph -> 1 e. NN ) |
202 |
|
eqid |
|- ( 1 ... 1 ) = ( 1 ... 1 ) |
203 |
200 86 4 201 202
|
vdwpc |
|- ( ph -> ( <. 1 , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) ) |
204 |
199 203
|
mpbird |
|- ( ph -> <. 1 , K >. PolyAP F ) |