| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem8.r |  |-  ( ph -> R e. Fin ) | 
						
							| 2 |  | vdwlem8.k |  |-  ( ph -> K e. ( ZZ>= ` 2 ) ) | 
						
							| 3 |  | vdwlem8.w |  |-  ( ph -> W e. NN ) | 
						
							| 4 |  | vdwlem8.f |  |-  ( ph -> F : ( 1 ... ( 2 x. W ) ) --> R ) | 
						
							| 5 |  | vdwlem8.c |  |-  C e. _V | 
						
							| 6 |  | vdwlem8.a |  |-  ( ph -> A e. NN ) | 
						
							| 7 |  | vdwlem8.d |  |-  ( ph -> D e. NN ) | 
						
							| 8 |  | vdwlem8.s |  |-  ( ph -> ( A ( AP ` K ) D ) C_ ( `' G " { C } ) ) | 
						
							| 9 |  | vdwlem8.g |  |-  G = ( x e. ( 1 ... W ) |-> ( F ` ( x + W ) ) ) | 
						
							| 10 | 6 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 11 | 7 | nncnd |  |-  ( ph -> D e. CC ) | 
						
							| 12 | 10 11 | addcomd |  |-  ( ph -> ( A + D ) = ( D + A ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ph -> ( W - ( A + D ) ) = ( W - ( D + A ) ) ) | 
						
							| 14 | 3 | nncnd |  |-  ( ph -> W e. CC ) | 
						
							| 15 | 14 11 10 | subsub4d |  |-  ( ph -> ( ( W - D ) - A ) = ( W - ( D + A ) ) ) | 
						
							| 16 | 13 15 | eqtr4d |  |-  ( ph -> ( W - ( A + D ) ) = ( ( W - D ) - A ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) = ( ( A + A ) + ( ( W - D ) - A ) ) ) | 
						
							| 18 | 14 11 | subcld |  |-  ( ph -> ( W - D ) e. CC ) | 
						
							| 19 | 10 10 18 | ppncand |  |-  ( ph -> ( ( A + A ) + ( ( W - D ) - A ) ) = ( A + ( W - D ) ) ) | 
						
							| 20 | 17 19 | eqtrd |  |-  ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) = ( A + ( W - D ) ) ) | 
						
							| 21 | 6 6 | nnaddcld |  |-  ( ph -> ( A + A ) e. NN ) | 
						
							| 22 |  | cnvimass |  |-  ( `' G " { C } ) C_ dom G | 
						
							| 23 |  | fvex |  |-  ( F ` ( x + W ) ) e. _V | 
						
							| 24 | 23 9 | dmmpti |  |-  dom G = ( 1 ... W ) | 
						
							| 25 | 22 24 | sseqtri |  |-  ( `' G " { C } ) C_ ( 1 ... W ) | 
						
							| 26 | 8 25 | sstrdi |  |-  ( ph -> ( A ( AP ` K ) D ) C_ ( 1 ... W ) ) | 
						
							| 27 |  | ssun2 |  |-  ( ( A + D ) ( AP ` ( K - 1 ) ) D ) C_ ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 28 |  | uz2m1nn |  |-  ( K e. ( ZZ>= ` 2 ) -> ( K - 1 ) e. NN ) | 
						
							| 29 | 2 28 | syl |  |-  ( ph -> ( K - 1 ) e. NN ) | 
						
							| 30 | 6 7 | nnaddcld |  |-  ( ph -> ( A + D ) e. NN ) | 
						
							| 31 |  | vdwapid1 |  |-  ( ( ( K - 1 ) e. NN /\ ( A + D ) e. NN /\ D e. NN ) -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 32 | 29 30 7 31 | syl3anc |  |-  ( ph -> ( A + D ) e. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) | 
						
							| 33 | 27 32 | sselid |  |-  ( ph -> ( A + D ) e. ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 34 |  | eluz2nn |  |-  ( K e. ( ZZ>= ` 2 ) -> K e. NN ) | 
						
							| 35 | 2 34 | syl |  |-  ( ph -> K e. NN ) | 
						
							| 36 | 35 | nncnd |  |-  ( ph -> K e. CC ) | 
						
							| 37 |  | ax-1cn |  |-  1 e. CC | 
						
							| 38 |  | npcan |  |-  ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 39 | 36 37 38 | sylancl |  |-  ( ph -> ( ( K - 1 ) + 1 ) = K ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ph -> ( AP ` ( ( K - 1 ) + 1 ) ) = ( AP ` K ) ) | 
						
							| 41 | 40 | oveqd |  |-  ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( A ( AP ` K ) D ) ) | 
						
							| 42 | 29 | nnnn0d |  |-  ( ph -> ( K - 1 ) e. NN0 ) | 
						
							| 43 |  | vdwapun |  |-  ( ( ( K - 1 ) e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 44 | 42 6 7 43 | syl3anc |  |-  ( ph -> ( A ( AP ` ( ( K - 1 ) + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 45 | 41 44 | eqtr3d |  |-  ( ph -> ( A ( AP ` K ) D ) = ( { A } u. ( ( A + D ) ( AP ` ( K - 1 ) ) D ) ) ) | 
						
							| 46 | 33 45 | eleqtrrd |  |-  ( ph -> ( A + D ) e. ( A ( AP ` K ) D ) ) | 
						
							| 47 | 26 46 | sseldd |  |-  ( ph -> ( A + D ) e. ( 1 ... W ) ) | 
						
							| 48 |  | elfzuz3 |  |-  ( ( A + D ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( A + D ) ) ) | 
						
							| 49 |  | uznn0sub |  |-  ( W e. ( ZZ>= ` ( A + D ) ) -> ( W - ( A + D ) ) e. NN0 ) | 
						
							| 50 | 47 48 49 | 3syl |  |-  ( ph -> ( W - ( A + D ) ) e. NN0 ) | 
						
							| 51 |  | nnnn0addcl |  |-  ( ( ( A + A ) e. NN /\ ( W - ( A + D ) ) e. NN0 ) -> ( ( A + A ) + ( W - ( A + D ) ) ) e. NN ) | 
						
							| 52 | 21 50 51 | syl2anc |  |-  ( ph -> ( ( A + A ) + ( W - ( A + D ) ) ) e. NN ) | 
						
							| 53 | 20 52 | eqeltrrd |  |-  ( ph -> ( A + ( W - D ) ) e. NN ) | 
						
							| 54 |  | 1nn |  |-  1 e. NN | 
						
							| 55 |  | f1osng |  |-  ( ( 1 e. NN /\ D e. NN ) -> { <. 1 , D >. } : { 1 } -1-1-onto-> { D } ) | 
						
							| 56 | 54 7 55 | sylancr |  |-  ( ph -> { <. 1 , D >. } : { 1 } -1-1-onto-> { D } ) | 
						
							| 57 |  | f1of |  |-  ( { <. 1 , D >. } : { 1 } -1-1-onto-> { D } -> { <. 1 , D >. } : { 1 } --> { D } ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> { <. 1 , D >. } : { 1 } --> { D } ) | 
						
							| 59 | 7 | snssd |  |-  ( ph -> { D } C_ NN ) | 
						
							| 60 | 58 59 | fssd |  |-  ( ph -> { <. 1 , D >. } : { 1 } --> NN ) | 
						
							| 61 |  | 1z |  |-  1 e. ZZ | 
						
							| 62 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 63 | 61 62 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 64 | 63 | feq2i |  |-  ( { <. 1 , D >. } : ( 1 ... 1 ) --> NN <-> { <. 1 , D >. } : { 1 } --> NN ) | 
						
							| 65 | 60 64 | sylibr |  |-  ( ph -> { <. 1 , D >. } : ( 1 ... 1 ) --> NN ) | 
						
							| 66 |  | nnex |  |-  NN e. _V | 
						
							| 67 |  | ovex |  |-  ( 1 ... 1 ) e. _V | 
						
							| 68 | 66 67 | elmap |  |-  ( { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) <-> { <. 1 , D >. } : ( 1 ... 1 ) --> NN ) | 
						
							| 69 | 65 68 | sylibr |  |-  ( ph -> { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) ) | 
						
							| 70 | 6 3 | nnaddcld |  |-  ( ph -> ( A + W ) e. NN ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + W ) e. NN ) | 
						
							| 72 |  | elfznn0 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> m e. NN0 ) | 
						
							| 73 | 7 | nnnn0d |  |-  ( ph -> D e. NN0 ) | 
						
							| 74 |  | nn0mulcl |  |-  ( ( m e. NN0 /\ D e. NN0 ) -> ( m x. D ) e. NN0 ) | 
						
							| 75 | 72 73 74 | syl2anr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. NN0 ) | 
						
							| 76 |  | nnnn0addcl |  |-  ( ( ( A + W ) e. NN /\ ( m x. D ) e. NN0 ) -> ( ( A + W ) + ( m x. D ) ) e. NN ) | 
						
							| 77 | 71 75 76 | syl2anc |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. NN ) | 
						
							| 78 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 79 | 77 78 | eleqtrdi |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 80 | 8 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A ( AP ` K ) D ) C_ ( `' G " { C } ) ) | 
						
							| 81 |  | eqid |  |-  ( A + ( m x. D ) ) = ( A + ( m x. D ) ) | 
						
							| 82 |  | oveq1 |  |-  ( n = m -> ( n x. D ) = ( m x. D ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( n = m -> ( A + ( n x. D ) ) = ( A + ( m x. D ) ) ) | 
						
							| 84 | 83 | rspceeqv |  |-  ( ( m e. ( 0 ... ( K - 1 ) ) /\ ( A + ( m x. D ) ) = ( A + ( m x. D ) ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) | 
						
							| 85 | 81 84 | mpan2 |  |-  ( m e. ( 0 ... ( K - 1 ) ) -> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) | 
						
							| 86 | 35 | nnnn0d |  |-  ( ph -> K e. NN0 ) | 
						
							| 87 |  | vdwapval |  |-  ( ( K e. NN0 /\ A e. NN /\ D e. NN ) -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) | 
						
							| 88 | 86 6 7 87 | syl3anc |  |-  ( ph -> ( ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) <-> E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) ) | 
						
							| 89 | 88 | biimpar |  |-  ( ( ph /\ E. n e. ( 0 ... ( K - 1 ) ) ( A + ( m x. D ) ) = ( A + ( n x. D ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) | 
						
							| 90 | 85 89 | sylan2 |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( A ( AP ` K ) D ) ) | 
						
							| 91 | 80 90 | sseldd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( `' G " { C } ) ) | 
						
							| 92 | 23 9 | fnmpti |  |-  G Fn ( 1 ... W ) | 
						
							| 93 |  | fniniseg |  |-  ( G Fn ( 1 ... W ) -> ( ( A + ( m x. D ) ) e. ( `' G " { C } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) ) | 
						
							| 94 | 92 93 | ax-mp |  |-  ( ( A + ( m x. D ) ) e. ( `' G " { C } ) <-> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) | 
						
							| 95 | 91 94 | sylib |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + ( m x. D ) ) e. ( 1 ... W ) /\ ( G ` ( A + ( m x. D ) ) ) = C ) ) | 
						
							| 96 | 95 | simpld |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( A + ( m x. D ) ) e. ( 1 ... W ) ) | 
						
							| 97 |  | elfzuz3 |  |-  ( ( A + ( m x. D ) ) e. ( 1 ... W ) -> W e. ( ZZ>= ` ( A + ( m x. D ) ) ) ) | 
						
							| 98 |  | eluzelz |  |-  ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) -> W e. ZZ ) | 
						
							| 99 |  | eluzadd |  |-  ( ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) /\ W e. ZZ ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 100 | 98 99 | mpdan |  |-  ( W e. ( ZZ>= ` ( A + ( m x. D ) ) ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 101 | 96 97 100 | 3syl |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( W + W ) e. ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 102 | 14 | 2timesd |  |-  ( ph -> ( 2 x. W ) = ( W + W ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 2 x. W ) = ( W + W ) ) | 
						
							| 104 | 10 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> A e. CC ) | 
						
							| 105 | 14 | adantr |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> W e. CC ) | 
						
							| 106 | 75 | nn0cnd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( m x. D ) e. CC ) | 
						
							| 107 | 104 105 106 | add32d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) = ( ( A + ( m x. D ) ) + W ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) = ( ZZ>= ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 109 | 101 103 108 | 3eltr4d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( 2 x. W ) e. ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) ) | 
						
							| 110 |  | elfzuzb |  |-  ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) <-> ( ( ( A + W ) + ( m x. D ) ) e. ( ZZ>= ` 1 ) /\ ( 2 x. W ) e. ( ZZ>= ` ( ( A + W ) + ( m x. D ) ) ) ) ) | 
						
							| 111 | 79 109 110 | sylanbrc |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) ) | 
						
							| 112 | 107 | fveq2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( A + W ) + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 113 |  | fvoveq1 |  |-  ( x = ( A + ( m x. D ) ) -> ( F ` ( x + W ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 114 |  | fvex |  |-  ( F ` ( ( A + ( m x. D ) ) + W ) ) e. _V | 
						
							| 115 | 113 9 114 | fvmpt |  |-  ( ( A + ( m x. D ) ) e. ( 1 ... W ) -> ( G ` ( A + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 116 | 96 115 | syl |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( A + ( m x. D ) ) ) = ( F ` ( ( A + ( m x. D ) ) + W ) ) ) | 
						
							| 117 | 95 | simprd |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( G ` ( A + ( m x. D ) ) ) = C ) | 
						
							| 118 | 112 116 117 | 3eqtr2d |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) | 
						
							| 119 | 111 118 | jca |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) /\ ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) | 
						
							| 120 |  | eleq1 |  |-  ( x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) <-> ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) ) ) | 
						
							| 121 |  | fveqeq2 |  |-  ( x = ( ( A + W ) + ( m x. D ) ) -> ( ( F ` x ) = C <-> ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) | 
						
							| 122 | 120 121 | anbi12d |  |-  ( x = ( ( A + W ) + ( m x. D ) ) -> ( ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) <-> ( ( ( A + W ) + ( m x. D ) ) e. ( 1 ... ( 2 x. W ) ) /\ ( F ` ( ( A + W ) + ( m x. D ) ) ) = C ) ) ) | 
						
							| 123 | 119 122 | syl5ibrcom |  |-  ( ( ph /\ m e. ( 0 ... ( K - 1 ) ) ) -> ( x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) | 
						
							| 124 | 123 | rexlimdva |  |-  ( ph -> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) -> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) | 
						
							| 125 |  | vdwapval |  |-  ( ( K e. NN0 /\ ( A + W ) e. NN /\ D e. NN ) -> ( x e. ( ( A + W ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) ) ) | 
						
							| 126 | 86 70 7 125 | syl3anc |  |-  ( ph -> ( x e. ( ( A + W ) ( AP ` K ) D ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( ( A + W ) + ( m x. D ) ) ) ) | 
						
							| 127 |  | ffn |  |-  ( F : ( 1 ... ( 2 x. W ) ) --> R -> F Fn ( 1 ... ( 2 x. W ) ) ) | 
						
							| 128 |  | fniniseg |  |-  ( F Fn ( 1 ... ( 2 x. W ) ) -> ( x e. ( `' F " { C } ) <-> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) | 
						
							| 129 | 4 127 128 | 3syl |  |-  ( ph -> ( x e. ( `' F " { C } ) <-> ( x e. ( 1 ... ( 2 x. W ) ) /\ ( F ` x ) = C ) ) ) | 
						
							| 130 | 124 126 129 | 3imtr4d |  |-  ( ph -> ( x e. ( ( A + W ) ( AP ` K ) D ) -> x e. ( `' F " { C } ) ) ) | 
						
							| 131 | 130 | ssrdv |  |-  ( ph -> ( ( A + W ) ( AP ` K ) D ) C_ ( `' F " { C } ) ) | 
						
							| 132 |  | fvsng |  |-  ( ( 1 e. NN /\ D e. NN ) -> ( { <. 1 , D >. } ` 1 ) = D ) | 
						
							| 133 | 54 7 132 | sylancr |  |-  ( ph -> ( { <. 1 , D >. } ` 1 ) = D ) | 
						
							| 134 | 133 | oveq2d |  |-  ( ph -> ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) = ( ( A + ( W - D ) ) + D ) ) | 
						
							| 135 | 10 18 11 | addassd |  |-  ( ph -> ( ( A + ( W - D ) ) + D ) = ( A + ( ( W - D ) + D ) ) ) | 
						
							| 136 | 14 11 | npcand |  |-  ( ph -> ( ( W - D ) + D ) = W ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ph -> ( A + ( ( W - D ) + D ) ) = ( A + W ) ) | 
						
							| 138 | 134 135 137 | 3eqtrd |  |-  ( ph -> ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) = ( A + W ) ) | 
						
							| 139 | 138 133 | oveq12d |  |-  ( ph -> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) = ( ( A + W ) ( AP ` K ) D ) ) | 
						
							| 140 | 138 | fveq2d |  |-  ( ph -> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) = ( F ` ( A + W ) ) ) | 
						
							| 141 |  | vdwapid1 |  |-  ( ( K e. NN /\ A e. NN /\ D e. NN ) -> A e. ( A ( AP ` K ) D ) ) | 
						
							| 142 | 35 6 7 141 | syl3anc |  |-  ( ph -> A e. ( A ( AP ` K ) D ) ) | 
						
							| 143 | 8 142 | sseldd |  |-  ( ph -> A e. ( `' G " { C } ) ) | 
						
							| 144 |  | fniniseg |  |-  ( G Fn ( 1 ... W ) -> ( A e. ( `' G " { C } ) <-> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) ) | 
						
							| 145 | 92 144 | ax-mp |  |-  ( A e. ( `' G " { C } ) <-> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) | 
						
							| 146 | 143 145 | sylib |  |-  ( ph -> ( A e. ( 1 ... W ) /\ ( G ` A ) = C ) ) | 
						
							| 147 | 146 | simpld |  |-  ( ph -> A e. ( 1 ... W ) ) | 
						
							| 148 |  | fvoveq1 |  |-  ( x = A -> ( F ` ( x + W ) ) = ( F ` ( A + W ) ) ) | 
						
							| 149 |  | fvex |  |-  ( F ` ( A + W ) ) e. _V | 
						
							| 150 | 148 9 149 | fvmpt |  |-  ( A e. ( 1 ... W ) -> ( G ` A ) = ( F ` ( A + W ) ) ) | 
						
							| 151 | 147 150 | syl |  |-  ( ph -> ( G ` A ) = ( F ` ( A + W ) ) ) | 
						
							| 152 | 146 | simprd |  |-  ( ph -> ( G ` A ) = C ) | 
						
							| 153 | 140 151 152 | 3eqtr2d |  |-  ( ph -> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) = C ) | 
						
							| 154 | 153 | sneqd |  |-  ( ph -> { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } = { C } ) | 
						
							| 155 | 154 | imaeq2d |  |-  ( ph -> ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) = ( `' F " { C } ) ) | 
						
							| 156 | 131 139 155 | 3sstr4d |  |-  ( ph -> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) | 
						
							| 157 | 156 | ralrimivw |  |-  ( ph -> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) | 
						
							| 158 | 153 | mpteq2dv |  |-  ( ph -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ( i e. ( 1 ... 1 ) |-> C ) ) | 
						
							| 159 |  | fconstmpt |  |-  ( ( 1 ... 1 ) X. { C } ) = ( i e. ( 1 ... 1 ) |-> C ) | 
						
							| 160 | 158 159 | eqtr4di |  |-  ( ph -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ( ( 1 ... 1 ) X. { C } ) ) | 
						
							| 161 | 160 | rneqd |  |-  ( ph -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = ran ( ( 1 ... 1 ) X. { C } ) ) | 
						
							| 162 |  | elfz3 |  |-  ( 1 e. ZZ -> 1 e. ( 1 ... 1 ) ) | 
						
							| 163 |  | ne0i |  |-  ( 1 e. ( 1 ... 1 ) -> ( 1 ... 1 ) =/= (/) ) | 
						
							| 164 | 61 162 163 | mp2b |  |-  ( 1 ... 1 ) =/= (/) | 
						
							| 165 |  | rnxp |  |-  ( ( 1 ... 1 ) =/= (/) -> ran ( ( 1 ... 1 ) X. { C } ) = { C } ) | 
						
							| 166 | 164 165 | ax-mp |  |-  ran ( ( 1 ... 1 ) X. { C } ) = { C } | 
						
							| 167 | 161 166 | eqtrdi |  |-  ( ph -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) = { C } ) | 
						
							| 168 | 167 | fveq2d |  |-  ( ph -> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = ( # ` { C } ) ) | 
						
							| 169 |  | hashsng |  |-  ( C e. _V -> ( # ` { C } ) = 1 ) | 
						
							| 170 | 5 169 | ax-mp |  |-  ( # ` { C } ) = 1 | 
						
							| 171 | 168 170 | eqtrdi |  |-  ( ph -> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) | 
						
							| 172 |  | oveq1 |  |-  ( a = ( A + ( W - D ) ) -> ( a + ( d ` i ) ) = ( ( A + ( W - D ) ) + ( d ` i ) ) ) | 
						
							| 173 | 172 | oveq1d |  |-  ( a = ( A + ( W - D ) ) -> ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) ) | 
						
							| 174 |  | fvoveq1 |  |-  ( a = ( A + ( W - D ) ) -> ( F ` ( a + ( d ` i ) ) ) = ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) | 
						
							| 175 | 174 | sneqd |  |-  ( a = ( A + ( W - D ) ) -> { ( F ` ( a + ( d ` i ) ) ) } = { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) | 
						
							| 176 | 175 | imaeq2d |  |-  ( a = ( A + ( W - D ) ) -> ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) | 
						
							| 177 | 173 176 | sseq12d |  |-  ( a = ( A + ( W - D ) ) -> ( ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) <-> ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) ) | 
						
							| 178 | 177 | ralbidv |  |-  ( a = ( A + ( W - D ) ) -> ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) ) ) | 
						
							| 179 | 174 | mpteq2dv |  |-  ( a = ( A + ( W - D ) ) -> ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) = ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) | 
						
							| 180 | 179 | rneqd |  |-  ( a = ( A + ( W - D ) ) -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) | 
						
							| 181 | 180 | fveqeq2d |  |-  ( a = ( A + ( W - D ) ) -> ( ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 <-> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) ) | 
						
							| 182 | 178 181 | anbi12d |  |-  ( a = ( A + ( W - D ) ) -> ( ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) <-> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) ) ) | 
						
							| 183 |  | fveq1 |  |-  ( d = { <. 1 , D >. } -> ( d ` i ) = ( { <. 1 , D >. } ` i ) ) | 
						
							| 184 |  | elfz1eq |  |-  ( i e. ( 1 ... 1 ) -> i = 1 ) | 
						
							| 185 | 184 | fveq2d |  |-  ( i e. ( 1 ... 1 ) -> ( { <. 1 , D >. } ` i ) = ( { <. 1 , D >. } ` 1 ) ) | 
						
							| 186 | 183 185 | sylan9eq |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( d ` i ) = ( { <. 1 , D >. } ` 1 ) ) | 
						
							| 187 | 186 | oveq2d |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( A + ( W - D ) ) + ( d ` i ) ) = ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) | 
						
							| 188 | 187 186 | oveq12d |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) = ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) ) | 
						
							| 189 | 187 | fveq2d |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) = ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) | 
						
							| 190 | 189 | sneqd |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } = { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) | 
						
							| 191 | 190 | imaeq2d |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) = ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) | 
						
							| 192 | 188 191 | sseq12d |  |-  ( ( d = { <. 1 , D >. } /\ i e. ( 1 ... 1 ) ) -> ( ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) <-> ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) ) | 
						
							| 193 | 192 | ralbidva |  |-  ( d = { <. 1 , D >. } -> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) <-> A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) ) ) | 
						
							| 194 | 189 | mpteq2dva |  |-  ( d = { <. 1 , D >. } -> ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) = ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) | 
						
							| 195 | 194 | rneqd |  |-  ( d = { <. 1 , D >. } -> ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) = ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) | 
						
							| 196 | 195 | fveqeq2d |  |-  ( d = { <. 1 , D >. } -> ( ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 <-> ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) | 
						
							| 197 | 193 196 | anbi12d |  |-  ( d = { <. 1 , D >. } -> ( ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( d ` i ) ) ) ) ) = 1 ) <-> ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) ) | 
						
							| 198 | 182 197 | rspc2ev |  |-  ( ( ( A + ( W - D ) ) e. NN /\ { <. 1 , D >. } e. ( NN ^m ( 1 ... 1 ) ) /\ ( A. i e. ( 1 ... 1 ) ( ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ( AP ` K ) ( { <. 1 , D >. } ` 1 ) ) C_ ( `' F " { ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( ( A + ( W - D ) ) + ( { <. 1 , D >. } ` 1 ) ) ) ) ) = 1 ) ) -> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) | 
						
							| 199 | 53 69 157 171 198 | syl112anc |  |-  ( ph -> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) | 
						
							| 200 |  | ovex |  |-  ( 1 ... ( 2 x. W ) ) e. _V | 
						
							| 201 | 54 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 202 |  | eqid |  |-  ( 1 ... 1 ) = ( 1 ... 1 ) | 
						
							| 203 | 200 86 4 201 202 | vdwpc |  |-  ( ph -> ( <. 1 , K >. PolyAP F <-> E. a e. NN E. d e. ( NN ^m ( 1 ... 1 ) ) ( A. i e. ( 1 ... 1 ) ( ( a + ( d ` i ) ) ( AP ` K ) ( d ` i ) ) C_ ( `' F " { ( F ` ( a + ( d ` i ) ) ) } ) /\ ( # ` ran ( i e. ( 1 ... 1 ) |-> ( F ` ( a + ( d ` i ) ) ) ) ) = 1 ) ) ) | 
						
							| 204 | 199 203 | mpbird |  |-  ( ph -> <. 1 , K >. PolyAP F ) |