Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwlem9.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
vdwlem9.s |
⊢ ( 𝜑 → ∀ 𝑠 ∈ Fin ∃ 𝑛 ∈ ℕ ∀ 𝑓 ∈ ( 𝑠 ↑m ( 1 ... 𝑛 ) ) 𝐾 MonoAP 𝑓 ) |
4 |
|
vdwlem9.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
vdwlem9.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
6 |
|
vdwlem9.g |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
7 |
|
vdwlem9.v |
⊢ ( 𝜑 → 𝑉 ∈ ℕ ) |
8 |
|
vdwlem9.a |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↑m ( 1 ... 𝑉 ) ) 𝐾 MonoAP 𝑓 ) |
9 |
|
vdwlem9.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
10 |
|
vdwlem9.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑉 ) ↦ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐾 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝐹 ) ) |
12 |
7 5 1 9 10
|
vdwlem4 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
13 |
|
ovex |
⊢ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ∈ V |
14 |
|
ovex |
⊢ ( 1 ... 𝑉 ) ∈ V |
15 |
13 14
|
elmap |
⊢ ( 𝐹 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↑m ( 1 ... 𝑉 ) ) ↔ 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
16 |
12 15
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↑m ( 1 ... 𝑉 ) ) ) |
17 |
11 8 16
|
rspcdva |
⊢ ( 𝜑 → 𝐾 MonoAP 𝐹 ) |
18 |
|
eluz2nn |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 2 ) → 𝐾 ∈ ℕ ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
20 |
19
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
21 |
14 20 12
|
vdwmc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑔 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
23 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) |
24 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐾 ∈ ℕ ) |
25 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ℕ ) |
26 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑑 ∈ ℕ ) |
27 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑎 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
29 |
23 28
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ( ◡ 𝐹 “ { 𝑔 } ) ) |
30 |
12
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 1 ... 𝑉 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐹 Fn ( 1 ... 𝑉 ) ) |
32 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑉 ) → ( 𝑎 ∈ ( ◡ 𝐹 “ { 𝑔 } ) ↔ ( 𝑎 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑔 ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 ∈ ( ◡ 𝐹 “ { 𝑔 } ) ↔ ( 𝑎 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑔 ) ) ) |
34 |
29 33
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 ∈ ( 1 ... 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑔 ) ) |
35 |
34
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝐹 ‘ 𝑎 ) = 𝑔 ) |
36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
37 |
34
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ( 1 ... 𝑉 ) ) |
38 |
36 37
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
39 |
35 38
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ) |
40 |
|
rsp |
⊢ ( ∀ 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) → ( 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
41 |
22 39 40
|
sylc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑉 ∈ ℕ ) |
43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑊 ∈ ℕ ) |
44 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑅 ∈ Fin ) |
45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐻 : ( 1 ... ( 𝑊 · ( 2 · 𝑉 ) ) ) ⟶ 𝑅 ) |
46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑀 ∈ ℕ ) |
47 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
48 |
|
elmapg |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... 𝑊 ) ∈ V ) → ( 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↔ 𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) |
49 |
44 47 48
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑔 ∈ ( 𝑅 ↑m ( 1 ... 𝑊 ) ) ↔ 𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) |
50 |
39 49
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
51 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 2 ) ) |
52 |
42 43 44 45 10 46 50 51 25 26 23
|
vdwlem7 |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
53 |
|
olc |
⊢ ( ( 𝐾 + 1 ) MonoAP 𝑔 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝐾 + 1 ) MonoAP 𝑔 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
55 |
52 54
|
jaod |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) ) |
56 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 − 1 ) = ( 𝑎 − 1 ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 − 1 ) + 𝑉 ) = ( ( 𝑎 − 1 ) + 𝑉 ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) = ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) = ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) |
60 |
59
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) |
61 |
60
|
mpteq2dv |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑥 − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) ) |
62 |
47
|
mptex |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) ∈ V |
63 |
61 10 62
|
fvmpt |
⊢ ( 𝑎 ∈ ( 1 ... 𝑉 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) ) |
64 |
37 63
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝐹 ‘ 𝑎 ) = ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) ) |
65 |
64 35
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) = 𝑔 ) |
66 |
65
|
breq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝐾 + 1 ) MonoAP ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) ↔ ( 𝐾 + 1 ) MonoAP 𝑔 ) ) |
67 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝐾 ∈ ℕ0 ) |
68 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
69 |
67 68
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝐾 + 1 ) ∈ ℕ0 ) |
70 |
|
nnm1nn0 |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 − 1 ) ∈ ℕ0 ) |
71 |
25 70
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 − 1 ) ∈ ℕ0 ) |
72 |
|
nn0nnaddcl |
⊢ ( ( ( 𝑎 − 1 ) ∈ ℕ0 ∧ 𝑉 ∈ ℕ ) → ( ( 𝑎 − 1 ) + 𝑉 ) ∈ ℕ ) |
73 |
71 42 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝑎 − 1 ) + 𝑉 ) ∈ ℕ ) |
74 |
43 73
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ∈ ℕ ) |
75 |
25 42
|
nnaddcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 + 𝑉 ) ∈ ℕ ) |
76 |
43 75
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 𝑎 + 𝑉 ) ) ∈ ℕ ) |
77 |
76
|
nnzd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 𝑎 + 𝑉 ) ) ∈ ℤ ) |
78 |
|
2nn |
⊢ 2 ∈ ℕ |
79 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑉 ∈ ℕ ) → ( 2 · 𝑉 ) ∈ ℕ ) |
80 |
78 7 79
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℕ ) |
81 |
5 80
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℕ ) |
82 |
81
|
nnzd |
⊢ ( 𝜑 → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ) |
84 |
25
|
nnred |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ℝ ) |
85 |
42
|
nnred |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑉 ∈ ℝ ) |
86 |
|
elfzle2 |
⊢ ( 𝑎 ∈ ( 1 ... 𝑉 ) → 𝑎 ≤ 𝑉 ) |
87 |
37 86
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ≤ 𝑉 ) |
88 |
84 85 85 87
|
leadd1dd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 + 𝑉 ) ≤ ( 𝑉 + 𝑉 ) ) |
89 |
42
|
nncnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑉 ∈ ℂ ) |
90 |
89
|
2timesd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 2 · 𝑉 ) = ( 𝑉 + 𝑉 ) ) |
91 |
88 90
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 + 𝑉 ) ≤ ( 2 · 𝑉 ) ) |
92 |
75
|
nnred |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 + 𝑉 ) ∈ ℝ ) |
93 |
80
|
nnred |
⊢ ( 𝜑 → ( 2 · 𝑉 ) ∈ ℝ ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 2 · 𝑉 ) ∈ ℝ ) |
95 |
43
|
nnred |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑊 ∈ ℝ ) |
96 |
43
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 0 < 𝑊 ) |
97 |
|
lemul2 |
⊢ ( ( ( 𝑎 + 𝑉 ) ∈ ℝ ∧ ( 2 · 𝑉 ) ∈ ℝ ∧ ( 𝑊 ∈ ℝ ∧ 0 < 𝑊 ) ) → ( ( 𝑎 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
98 |
92 94 95 96 97
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝑎 + 𝑉 ) ≤ ( 2 · 𝑉 ) ↔ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
99 |
91 98
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 𝑎 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) |
100 |
|
eluz2 |
⊢ ( ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ( ℤ≥ ‘ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ) ↔ ( ( 𝑊 · ( 𝑎 + 𝑉 ) ) ∈ ℤ ∧ ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ℤ ∧ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ≤ ( 𝑊 · ( 2 · 𝑉 ) ) ) ) |
101 |
77 83 99 100
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ( ℤ≥ ‘ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ) ) |
102 |
43
|
nncnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑊 ∈ ℂ ) |
103 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 1 ∈ ℂ ) |
104 |
71
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑎 − 1 ) ∈ ℂ ) |
105 |
104 89
|
addcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝑎 − 1 ) + 𝑉 ) ∈ ℂ ) |
106 |
102 103 105
|
adddid |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 1 + ( ( 𝑎 − 1 ) + 𝑉 ) ) ) = ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) |
107 |
103 104 89
|
addassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 1 + ( 𝑎 − 1 ) ) + 𝑉 ) = ( 1 + ( ( 𝑎 − 1 ) + 𝑉 ) ) ) |
108 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
109 |
25
|
nncnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → 𝑎 ∈ ℂ ) |
110 |
|
pncan3 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 1 + ( 𝑎 − 1 ) ) = 𝑎 ) |
111 |
108 109 110
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 1 + ( 𝑎 − 1 ) ) = 𝑎 ) |
112 |
111
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 1 + ( 𝑎 − 1 ) ) + 𝑉 ) = ( 𝑎 + 𝑉 ) ) |
113 |
107 112
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 1 + ( ( 𝑎 − 1 ) + 𝑉 ) ) = ( 𝑎 + 𝑉 ) ) |
114 |
113
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 1 + ( ( 𝑎 − 1 ) + 𝑉 ) ) ) = ( 𝑊 · ( 𝑎 + 𝑉 ) ) ) |
115 |
102
|
mulid1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · 1 ) = 𝑊 ) |
116 |
115
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝑊 · 1 ) + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) |
117 |
106 114 116
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 𝑎 + 𝑉 ) ) = ( 𝑊 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) |
118 |
117
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ℤ≥ ‘ ( 𝑊 · ( 𝑎 + 𝑉 ) ) ) = ( ℤ≥ ‘ ( 𝑊 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) |
119 |
101 118
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 𝑊 · ( 2 · 𝑉 ) ) ∈ ( ℤ≥ ‘ ( 𝑊 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) |
120 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) = ( 𝐻 ‘ ( 𝑧 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) |
121 |
120
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) = ( 𝑧 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑧 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) |
122 |
44 69 43 74 45 119 121
|
vdwlem2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝐾 + 1 ) MonoAP ( 𝑦 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐻 ‘ ( 𝑦 + ( 𝑊 · ( ( 𝑎 − 1 ) + 𝑉 ) ) ) ) ) → ( 𝐾 + 1 ) MonoAP 𝐻 ) ) |
123 |
66 122
|
sylbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 𝐾 + 1 ) MonoAP 𝑔 → ( 𝐾 + 1 ) MonoAP 𝐻 ) ) |
124 |
123
|
orim2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
125 |
55 124
|
syld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( ( 〈 𝑀 , 𝐾 〉 PolyAP 𝑔 ∨ ( 𝐾 + 1 ) MonoAP 𝑔 ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
126 |
41 125
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) ) ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) |
127 |
126
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
128 |
127
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
129 |
128
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑔 } ) → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
130 |
21 129
|
sylbid |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) ) |
131 |
17 130
|
mpd |
⊢ ( 𝜑 → ( 〈 ( 𝑀 + 1 ) , 𝐾 〉 PolyAP 𝐻 ∨ ( 𝐾 + 1 ) MonoAP 𝐻 ) ) |