| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem9.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 3 |  | vdwlem9.s | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  Fin ∃ 𝑛  ∈  ℕ ∀ 𝑓  ∈  ( 𝑠  ↑m  ( 1 ... 𝑛 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 4 |  | vdwlem9.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | vdwlem9.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 6 |  | vdwlem9.g | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 7 |  | vdwlem9.v | ⊢ ( 𝜑  →  𝑉  ∈  ℕ ) | 
						
							| 8 |  | vdwlem9.a | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ↑m  ( 1 ... 𝑉 ) ) 𝐾  MonoAP  𝑓 ) | 
						
							| 9 |  | vdwlem9.h | ⊢ ( 𝜑  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 10 |  | vdwlem9.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑉 )  ↦  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑓  =  𝐹  →  ( 𝐾  MonoAP  𝑓  ↔  𝐾  MonoAP  𝐹 ) ) | 
						
							| 12 | 7 5 1 9 10 | vdwlem4 | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 13 |  | ovex | ⊢ ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ∈  V | 
						
							| 14 |  | ovex | ⊢ ( 1 ... 𝑉 )  ∈  V | 
						
							| 15 | 13 14 | elmap | ⊢ ( 𝐹  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ↑m  ( 1 ... 𝑉 ) )  ↔  𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 16 | 12 15 | sylibr | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ↑m  ( 1 ... 𝑉 ) ) ) | 
						
							| 17 | 11 8 16 | rspcdva | ⊢ ( 𝜑  →  𝐾  MonoAP  𝐹 ) | 
						
							| 18 |  | eluz2nn | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 2 )  →  𝐾  ∈  ℕ ) | 
						
							| 19 | 2 18 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 20 | 19 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 21 | 14 20 12 | vdwmc | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐹  ↔  ∃ 𝑔 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) ) | 
						
							| 22 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 23 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) | 
						
							| 24 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐾  ∈  ℕ ) | 
						
							| 25 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 26 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 27 |  | vdwapid1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  𝑎  ∈  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) | 
						
							| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) | 
						
							| 29 | 23 28 | sseldd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ( ◡ 𝐹  “  { 𝑔 } ) ) | 
						
							| 30 | 12 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( 1 ... 𝑉 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐹  Fn  ( 1 ... 𝑉 ) ) | 
						
							| 32 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... 𝑉 )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  { 𝑔 } )  ↔  ( 𝑎  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑔 ) ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  ∈  ( ◡ 𝐹  “  { 𝑔 } )  ↔  ( 𝑎  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑔 ) ) ) | 
						
							| 34 | 29 33 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  ∈  ( 1 ... 𝑉 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑔 ) ) | 
						
							| 35 | 34 | simprd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝐹 ‘ 𝑎 )  =  𝑔 ) | 
						
							| 36 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐹 : ( 1 ... 𝑉 ) ⟶ ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 37 | 34 | simpld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 38 | 36 37 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝐹 ‘ 𝑎 )  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 39 | 35 38 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ) | 
						
							| 40 |  | rsp | ⊢ ( ∀ 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) ) ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  →  ( 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 41 | 22 39 40 | sylc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 42 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑉  ∈  ℕ ) | 
						
							| 43 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑊  ∈  ℕ ) | 
						
							| 44 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑅  ∈  Fin ) | 
						
							| 45 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐻 : ( 1 ... ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ⟶ 𝑅 ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑀  ∈  ℕ ) | 
						
							| 47 |  | ovex | ⊢ ( 1 ... 𝑊 )  ∈  V | 
						
							| 48 |  | elmapg | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... 𝑊 )  ∈  V )  →  ( 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ↔  𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) | 
						
							| 49 | 44 47 48 | sylancl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑔  ∈  ( 𝑅  ↑m  ( 1 ... 𝑊 ) )  ↔  𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) ) | 
						
							| 50 | 39 49 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑔 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 51 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐾  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 52 | 42 43 44 45 10 46 50 51 25 26 23 | vdwlem7 | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 53 |  | olc | ⊢ ( ( 𝐾  +  1 )  MonoAP  𝑔  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 54 | 53 | a1i | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝐾  +  1 )  MonoAP  𝑔  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 55 | 52 54 | jaod | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  −  1 )  =  ( 𝑎  −  1 ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  −  1 )  +  𝑉 )  =  ( ( 𝑎  −  1 )  +  𝑉 ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) )  =  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) )  =  ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 61 | 60 | mpteq2dv | ⊢ ( 𝑥  =  𝑎  →  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑥  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 62 | 47 | mptex | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) )  ∈  V | 
						
							| 63 | 61 10 62 | fvmpt | ⊢ ( 𝑎  ∈  ( 1 ... 𝑉 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 64 | 37 63 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) ) | 
						
							| 65 | 64 35 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) )  =  𝑔 ) | 
						
							| 66 | 65 | breq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝐾  +  1 )  MonoAP  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) )  ↔  ( 𝐾  +  1 )  MonoAP  𝑔 ) ) | 
						
							| 67 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 68 |  | peano2nn0 | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 70 |  | nnm1nn0 | ⊢ ( 𝑎  ∈  ℕ  →  ( 𝑎  −  1 )  ∈  ℕ0 ) | 
						
							| 71 | 25 70 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  −  1 )  ∈  ℕ0 ) | 
						
							| 72 |  | nn0nnaddcl | ⊢ ( ( ( 𝑎  −  1 )  ∈  ℕ0  ∧  𝑉  ∈  ℕ )  →  ( ( 𝑎  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 73 | 71 42 72 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝑎  −  1 )  +  𝑉 )  ∈  ℕ ) | 
						
							| 74 | 43 73 | nnmulcld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 75 | 25 42 | nnaddcld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  +  𝑉 )  ∈  ℕ ) | 
						
							| 76 | 43 75 | nnmulcld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ∈  ℕ ) | 
						
							| 77 | 76 | nnzd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ∈  ℤ ) | 
						
							| 78 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 79 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑉  ∈  ℕ )  →  ( 2  ·  𝑉 )  ∈  ℕ ) | 
						
							| 80 | 78 7 79 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  𝑉 )  ∈  ℕ ) | 
						
							| 81 | 5 80 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℕ ) | 
						
							| 82 | 81 | nnzd | ⊢ ( 𝜑  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℤ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℤ ) | 
						
							| 84 | 25 | nnred | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ℝ ) | 
						
							| 85 | 42 | nnred | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑉  ∈  ℝ ) | 
						
							| 86 |  | elfzle2 | ⊢ ( 𝑎  ∈  ( 1 ... 𝑉 )  →  𝑎  ≤  𝑉 ) | 
						
							| 87 | 37 86 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ≤  𝑉 ) | 
						
							| 88 | 84 85 85 87 | leadd1dd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  +  𝑉 )  ≤  ( 𝑉  +  𝑉 ) ) | 
						
							| 89 | 42 | nncnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑉  ∈  ℂ ) | 
						
							| 90 | 89 | 2timesd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 2  ·  𝑉 )  =  ( 𝑉  +  𝑉 ) ) | 
						
							| 91 | 88 90 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  +  𝑉 )  ≤  ( 2  ·  𝑉 ) ) | 
						
							| 92 | 75 | nnred | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  +  𝑉 )  ∈  ℝ ) | 
						
							| 93 | 80 | nnred | ⊢ ( 𝜑  →  ( 2  ·  𝑉 )  ∈  ℝ ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 2  ·  𝑉 )  ∈  ℝ ) | 
						
							| 95 | 43 | nnred | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑊  ∈  ℝ ) | 
						
							| 96 | 43 | nngt0d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  0  <  𝑊 ) | 
						
							| 97 |  | lemul2 | ⊢ ( ( ( 𝑎  +  𝑉 )  ∈  ℝ  ∧  ( 2  ·  𝑉 )  ∈  ℝ  ∧  ( 𝑊  ∈  ℝ  ∧  0  <  𝑊 ) )  →  ( ( 𝑎  +  𝑉 )  ≤  ( 2  ·  𝑉 )  ↔  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 98 | 92 94 95 96 97 | syl112anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝑎  +  𝑉 )  ≤  ( 2  ·  𝑉 )  ↔  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 99 | 91 98 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) | 
						
							| 100 |  | eluz2 | ⊢ ( ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ( ℤ≥ ‘ ( 𝑊  ·  ( 𝑎  +  𝑉 ) ) )  ↔  ( ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ∈  ℤ  ∧  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ℤ  ∧  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  ≤  ( 𝑊  ·  ( 2  ·  𝑉 ) ) ) ) | 
						
							| 101 | 77 83 99 100 | syl3anbrc | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ( ℤ≥ ‘ ( 𝑊  ·  ( 𝑎  +  𝑉 ) ) ) ) | 
						
							| 102 | 43 | nncnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑊  ∈  ℂ ) | 
						
							| 103 |  | 1cnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  1  ∈  ℂ ) | 
						
							| 104 | 71 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑎  −  1 )  ∈  ℂ ) | 
						
							| 105 | 104 89 | addcld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝑎  −  1 )  +  𝑉 )  ∈  ℂ ) | 
						
							| 106 | 102 103 105 | adddid | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 1  +  ( ( 𝑎  −  1 )  +  𝑉 ) ) )  =  ( ( 𝑊  ·  1 )  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 107 | 103 104 89 | addassd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 1  +  ( 𝑎  −  1 ) )  +  𝑉 )  =  ( 1  +  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) | 
						
							| 108 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 109 | 25 | nncnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  𝑎  ∈  ℂ ) | 
						
							| 110 |  | pncan3 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑎  ∈  ℂ )  →  ( 1  +  ( 𝑎  −  1 ) )  =  𝑎 ) | 
						
							| 111 | 108 109 110 | sylancr | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 1  +  ( 𝑎  −  1 ) )  =  𝑎 ) | 
						
							| 112 | 111 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 1  +  ( 𝑎  −  1 ) )  +  𝑉 )  =  ( 𝑎  +  𝑉 ) ) | 
						
							| 113 | 107 112 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 1  +  ( ( 𝑎  −  1 )  +  𝑉 ) )  =  ( 𝑎  +  𝑉 ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 1  +  ( ( 𝑎  −  1 )  +  𝑉 ) ) )  =  ( 𝑊  ·  ( 𝑎  +  𝑉 ) ) ) | 
						
							| 115 | 102 | mulridd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  1 )  =  𝑊 ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝑊  ·  1 )  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) )  =  ( 𝑊  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 117 | 106 114 116 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 𝑎  +  𝑉 ) )  =  ( 𝑊  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ℤ≥ ‘ ( 𝑊  ·  ( 𝑎  +  𝑉 ) ) )  =  ( ℤ≥ ‘ ( 𝑊  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 119 | 101 118 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 𝑊  ·  ( 2  ·  𝑉 ) )  ∈  ( ℤ≥ ‘ ( 𝑊  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 120 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) )  =  ( 𝐻 ‘ ( 𝑧  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 121 | 120 | cbvmptv | ⊢ ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) )  =  ( 𝑧  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑧  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) ) | 
						
							| 122 | 44 69 43 74 45 119 121 | vdwlem2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝐾  +  1 )  MonoAP  ( 𝑦  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐻 ‘ ( 𝑦  +  ( 𝑊  ·  ( ( 𝑎  −  1 )  +  𝑉 ) ) ) ) )  →  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) | 
						
							| 123 | 66 122 | sylbird | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 𝐾  +  1 )  MonoAP  𝑔  →  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) | 
						
							| 124 | 123 | orim2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 125 | 55 124 | syld | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( ( 〈 𝑀 ,  𝐾 〉  PolyAP  𝑔  ∨  ( 𝐾  +  1 )  MonoAP  𝑔 )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 126 | 41 125 | mpd | ⊢ ( ( 𝜑  ∧  ( ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } ) ) )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) | 
						
							| 127 | 126 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ ) )  →  ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 128 | 127 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 129 | 128 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑔 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑔 } )  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 130 | 21 129 | sylbid | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐹  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) ) | 
						
							| 131 | 17 130 | mpd | ⊢ ( 𝜑  →  ( 〈 ( 𝑀  +  1 ) ,  𝐾 〉  PolyAP  𝐻  ∨  ( 𝐾  +  1 )  MonoAP  𝐻 ) ) |