| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem2.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem2.k | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 3 |  | vdwlem2.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 4 |  | vdwlem2.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | vdwlem2.f | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) | 
						
							| 6 |  | vdwlem2.m | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑊  +  𝑁 ) ) ) | 
						
							| 7 |  | vdwlem2.g | ⊢ 𝐺  =  ( 𝑥  ∈  ( 1 ... 𝑊 )  ↦  ( 𝐹 ‘ ( 𝑥  +  𝑁 ) ) ) | 
						
							| 8 |  | id | ⊢ ( 𝑎  ∈  ℕ  →  𝑎  ∈  ℕ ) | 
						
							| 9 |  | nnaddcl | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑎  +  𝑁 )  ∈  ℕ ) | 
						
							| 10 | 8 4 9 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( 𝑎  +  𝑁 )  ∈  ℕ ) | 
						
							| 11 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑎  ∈  ℕ ) | 
						
							| 12 | 11 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑎  ∈  ℂ ) | 
						
							| 13 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 14 | 13 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑁  ∈  ℂ ) | 
						
							| 15 |  | elfznn0 | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0cnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑚  ∈  ℂ ) | 
						
							| 18 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 19 | 18 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝑑  ∈  ℂ ) | 
						
							| 20 | 17 19 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑚  ·  𝑑 )  ∈  ℂ ) | 
						
							| 21 | 12 14 20 | add32d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  =  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  →  ( 𝑥  +  𝑁 )  =  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑥  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  →  ( ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 )  ↔  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 24 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... 𝑊 )  →  𝑥  ∈  ℕ ) | 
						
							| 25 |  | nnaddcl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  +  𝑁 )  ∈  ℕ ) | 
						
							| 26 | 24 4 25 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  ( 𝑥  +  𝑁 )  ∈  ℕ ) | 
						
							| 27 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 28 | 26 27 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  ( 𝑥  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 29 |  | elfzuz3 | ⊢ ( 𝑥  ∈  ( 1 ... 𝑊 )  →  𝑊  ∈  ( ℤ≥ ‘ 𝑥 ) ) | 
						
							| 30 | 4 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 31 |  | eluzadd | ⊢ ( ( 𝑊  ∈  ( ℤ≥ ‘ 𝑥 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) ) | 
						
							| 32 | 29 30 31 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  ( 𝑊  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) ) | 
						
							| 33 |  | uztrn | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑊  +  𝑁 ) )  ∧  ( 𝑊  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) ) | 
						
							| 34 | 6 32 33 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) ) | 
						
							| 35 |  | elfzuzb | ⊢ ( ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 )  ↔  ( ( 𝑥  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ( ℤ≥ ‘ ( 𝑥  +  𝑁 ) ) ) ) | 
						
							| 36 | 28 34 35 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 1 ... 𝑊 ) ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ∀ 𝑥  ∈  ( 1 ... 𝑊 ) ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 39 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ·  𝑑 )  =  ( 𝑚  ·  𝑑 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑎  +  ( 𝑛  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) ) | 
						
							| 43 | 42 | rspceeqv | ⊢ ( ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  ∧  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑛  ·  𝑑 ) ) ) | 
						
							| 44 | 40 43 | mpan2 | ⊢ ( 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑛  ·  𝑑 ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑛  ·  𝑑 ) ) ) | 
						
							| 46 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 48 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑎  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑛  ·  𝑑 ) ) ) ) | 
						
							| 49 | 47 11 18 48 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  =  ( 𝑎  +  ( 𝑛  ·  𝑑 ) ) ) ) | 
						
							| 50 | 45 49 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) | 
						
							| 51 | 39 50 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( ◡ 𝐺  “  { 𝑐 } ) ) | 
						
							| 52 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑥  +  𝑁 )  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑁 ) )  ∈  𝑅 ) | 
						
							| 53 | 36 52 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑊 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑁 ) )  ∈  𝑅 ) | 
						
							| 54 | 53 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 55 | 54 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  ( 1 ... 𝑊 ) ) | 
						
							| 56 | 55 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  𝐺  Fn  ( 1 ... 𝑊 ) ) | 
						
							| 57 |  | fniniseg | ⊢ ( 𝐺  Fn  ( 1 ... 𝑊 )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( ◡ 𝐺  “  { 𝑐 } )  ↔  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( ◡ 𝐺  “  { 𝑐 } )  ↔  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) ) | 
						
							| 59 | 51 58 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) | 
						
							| 60 | 59 | simpld | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 61 | 23 38 60 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 62 | 21 61 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 63 | 21 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) )  =  ( 𝐹 ‘ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) ) | 
						
							| 64 | 22 | fveq2d | ⊢ ( 𝑥  =  ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑁 ) )  =  ( 𝐹 ‘ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) ) | 
						
							| 65 |  | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) )  ∈  V | 
						
							| 66 | 64 7 65 | fvmpt | ⊢ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑊 )  →  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ( 𝐹 ‘ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) ) | 
						
							| 67 | 60 66 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  ( 𝐹 ‘ ( ( 𝑎  +  ( 𝑚  ·  𝑑 ) )  +  𝑁 ) ) ) | 
						
							| 68 | 59 | simprd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐺 ‘ ( 𝑎  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) | 
						
							| 69 | 63 67 68 | 3eqtr2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝐹 ‘ ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) | 
						
							| 70 | 62 69 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) | 
						
							| 71 |  | eleq1 | ⊢ ( 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  →  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↔  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 72 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑐  ↔  ( 𝐹 ‘ ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) | 
						
							| 73 | 71 72 | anbi12d | ⊢ ( 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  →  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑐 )  ↔  ( ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) )  =  𝑐 ) ) ) | 
						
							| 74 | 70 73 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  ∧  𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) )  →  ( 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  →  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑐 ) ) ) | 
						
							| 75 | 74 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) )  →  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑐 ) ) ) | 
						
							| 76 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( 𝑎  +  𝑁 )  ∈  ℕ ) | 
						
							| 77 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  𝑑  ∈  ℕ ) | 
						
							| 78 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑎  +  𝑁 )  ∈  ℕ  ∧  𝑑  ∈  ℕ )  →  ( 𝑥  ∈  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 79 | 46 76 77 78 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( 𝑥  ∈  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) 𝑥  =  ( ( 𝑎  +  𝑁 )  +  ( 𝑚  ·  𝑑 ) ) ) ) | 
						
							| 80 | 5 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 81 | 80 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  𝐹  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 82 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... 𝑀 )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑐 ) ) ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑐 ) ) ) | 
						
							| 84 | 75 79 83 | 3imtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( 𝑥  ∈  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  →  𝑥  ∈  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 85 | 84 | ssrdv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  ( 𝑑  ∈  ℕ  ∧  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) )  →  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 86 | 85 | expr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℕ )  ∧  𝑑  ∈  ℕ )  →  ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 87 | 86 | reximdva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ∃ 𝑑  ∈  ℕ ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 88 |  | oveq1 | ⊢ ( 𝑏  =  ( 𝑎  +  𝑁 )  →  ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  =  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ) | 
						
							| 89 | 88 | sseq1d | ⊢ ( 𝑏  =  ( 𝑎  +  𝑁 )  →  ( ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 90 | 89 | rexbidv | ⊢ ( 𝑏  =  ( 𝑎  +  𝑁 )  →  ( ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑑  ∈  ℕ ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 91 | 90 | rspcev | ⊢ ( ( ( 𝑎  +  𝑁 )  ∈  ℕ  ∧  ∃ 𝑑  ∈  ℕ ( ( 𝑎  +  𝑁 ) ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) )  →  ∃ 𝑏  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 92 | 10 87 91 | syl6an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ )  →  ( ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ∃ 𝑏  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 93 | 92 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ∃ 𝑏  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 94 | 93 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ∃ 𝑐 ∃ 𝑏  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 95 |  | ovex | ⊢ ( 1 ... 𝑊 )  ∈  V | 
						
							| 96 | 95 2 54 | vdwmc | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐺  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 97 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 98 | 97 2 5 | vdwmc | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐹  ↔  ∃ 𝑐 ∃ 𝑏  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 99 | 94 96 98 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐺  →  𝐾  MonoAP  𝐹 ) ) |