| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem2.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 2 |
|
vdwlem2.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 3 |
|
vdwlem2.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
| 4 |
|
vdwlem2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 5 |
|
vdwlem2.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) |
| 6 |
|
vdwlem2.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑊 + 𝑁 ) ) ) |
| 7 |
|
vdwlem2.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 1 ... 𝑊 ) ↦ ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) ) |
| 8 |
|
id |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ ) |
| 9 |
|
nnaddcl |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑎 + 𝑁 ) ∈ ℕ ) |
| 10 |
8 4 9
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( 𝑎 + 𝑁 ) ∈ ℕ ) |
| 11 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑎 ∈ ℕ ) |
| 12 |
11
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑎 ∈ ℂ ) |
| 13 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑁 ∈ ℕ ) |
| 14 |
13
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑁 ∈ ℂ ) |
| 15 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 17 |
16
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑚 ∈ ℂ ) |
| 18 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑑 ∈ ℕ ) |
| 19 |
18
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝑑 ∈ ℂ ) |
| 20 |
17 19
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑚 · 𝑑 ) ∈ ℂ ) |
| 21 |
12 14 20
|
add32d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) = ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝑥 + 𝑁 ) = ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) ) |
| 24 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑊 ) → 𝑥 ∈ ℕ ) |
| 25 |
|
nnaddcl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑥 + 𝑁 ) ∈ ℕ ) |
| 26 |
24 4 25
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ℕ ) |
| 27 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 28 |
26 27
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 29 |
|
elfzuz3 |
⊢ ( 𝑥 ∈ ( 1 ... 𝑊 ) → 𝑊 ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 30 |
4
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 31 |
|
eluzadd |
⊢ ( ( 𝑊 ∈ ( ℤ≥ ‘ 𝑥 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑊 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) |
| 32 |
29 30 31
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑊 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) |
| 33 |
|
uztrn |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑊 + 𝑁 ) ) ∧ ( 𝑊 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) |
| 34 |
6 32 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) |
| 35 |
|
elfzuzb |
⊢ ( ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑥 + 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑥 + 𝑁 ) ) ) ) |
| 36 |
28 34 35
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) |
| 37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... 𝑊 ) ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) |
| 38 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ∀ 𝑥 ∈ ( 1 ... 𝑊 ) ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) |
| 39 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) |
| 40 |
|
eqid |
⊢ ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) ) |
| 41 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · 𝑑 ) = ( 𝑚 · 𝑑 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑎 + ( 𝑛 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) |
| 43 |
42
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) |
| 44 |
40 43
|
mpan2 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) |
| 46 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → 𝐾 ∈ ℕ0 ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 48 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) ) |
| 49 |
47 11 18 48
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑛 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) = ( 𝑎 + ( 𝑛 · 𝑑 ) ) ) ) |
| 50 |
45 49
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
| 51 |
39 50
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐺 “ { 𝑐 } ) ) |
| 52 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑥 + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) ∈ 𝑅 ) |
| 53 |
36 52
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... 𝑊 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) ∈ 𝑅 ) |
| 54 |
53 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
| 55 |
54
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn ( 1 ... 𝑊 ) ) |
| 56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → 𝐺 Fn ( 1 ... 𝑊 ) ) |
| 57 |
|
fniniseg |
⊢ ( 𝐺 Fn ( 1 ... 𝑊 ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐺 “ { 𝑐 } ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐺 “ { 𝑐 } ) ↔ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) ) |
| 59 |
51 58
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ∧ ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) |
| 60 |
59
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) ) |
| 61 |
23 38 60
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ∈ ( 1 ... 𝑀 ) ) |
| 62 |
21 61
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ) |
| 63 |
21
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ) |
| 64 |
22
|
fveq2d |
⊢ ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑁 ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ) |
| 65 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ∈ V |
| 66 |
64 7 65
|
fvmpt |
⊢ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑊 ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ) |
| 67 |
60 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = ( 𝐹 ‘ ( ( 𝑎 + ( 𝑚 · 𝑑 ) ) + 𝑁 ) ) ) |
| 68 |
59
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) |
| 69 |
63 67 68
|
3eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) |
| 70 |
62 69
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) |
| 71 |
|
eleq1 |
⊢ ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ↔ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ) ) |
| 72 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑐 ↔ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) |
| 73 |
71 72
|
anbi12d |
⊢ ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑐 ) ↔ ( ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) = 𝑐 ) ) ) |
| 74 |
70 73
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) → ( 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑐 ) ) ) |
| 75 |
74
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑐 ) ) ) |
| 76 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( 𝑎 + 𝑁 ) ∈ ℕ ) |
| 77 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → 𝑑 ∈ ℕ ) |
| 78 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑎 + 𝑁 ) ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) ) |
| 79 |
46 76 77 78
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( ( 𝑎 + 𝑁 ) + ( 𝑚 · 𝑑 ) ) ) ) |
| 80 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 1 ... 𝑀 ) ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → 𝐹 Fn ( 1 ... 𝑀 ) ) |
| 82 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑀 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑐 ) ) ) |
| 83 |
81 82
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑐 ) ) ) |
| 84 |
75 79 83
|
3imtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( 𝑥 ∈ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 85 |
84
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) → ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 86 |
85
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 87 |
86
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 88 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑎 + 𝑁 ) → ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) = ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ) |
| 89 |
88
|
sseq1d |
⊢ ( 𝑏 = ( 𝑎 + 𝑁 ) → ( ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 90 |
89
|
rexbidv |
⊢ ( 𝑏 = ( 𝑎 + 𝑁 ) → ( ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 91 |
90
|
rspcev |
⊢ ( ( ( 𝑎 + 𝑁 ) ∈ ℕ ∧ ∃ 𝑑 ∈ ℕ ( ( 𝑎 + 𝑁 ) ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 92 |
10 87 91
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ ) → ( ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 93 |
92
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 94 |
93
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ∃ 𝑐 ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 95 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
| 96 |
95 2 54
|
vdwmc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐺 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
| 97 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 98 |
97 2 5
|
vdwmc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑏 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑏 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 99 |
94 96 98
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹 ) ) |