Metamath Proof Explorer


Theorem vdwlem2

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem2.r φ R Fin
vdwlem2.k φ K 0
vdwlem2.w φ W
vdwlem2.n φ N
vdwlem2.f φ F : 1 M R
vdwlem2.m φ M W + N
vdwlem2.g G = x 1 W F x + N
Assertion vdwlem2 φ K MonoAP G K MonoAP F

Proof

Step Hyp Ref Expression
1 vdwlem2.r φ R Fin
2 vdwlem2.k φ K 0
3 vdwlem2.w φ W
4 vdwlem2.n φ N
5 vdwlem2.f φ F : 1 M R
6 vdwlem2.m φ M W + N
7 vdwlem2.g G = x 1 W F x + N
8 id a a
9 nnaddcl a N a + N
10 8 4 9 syl2anr φ a a + N
11 simpllr φ a d a AP K d G -1 c m 0 K 1 a
12 11 nncnd φ a d a AP K d G -1 c m 0 K 1 a
13 4 ad3antrrr φ a d a AP K d G -1 c m 0 K 1 N
14 13 nncnd φ a d a AP K d G -1 c m 0 K 1 N
15 elfznn0 m 0 K 1 m 0
16 15 adantl φ a d a AP K d G -1 c m 0 K 1 m 0
17 16 nn0cnd φ a d a AP K d G -1 c m 0 K 1 m
18 simplrl φ a d a AP K d G -1 c m 0 K 1 d
19 18 nncnd φ a d a AP K d G -1 c m 0 K 1 d
20 17 19 mulcld φ a d a AP K d G -1 c m 0 K 1 m d
21 12 14 20 add32d φ a d a AP K d G -1 c m 0 K 1 a + N + m d = a + m d + N
22 oveq1 x = a + m d x + N = a + m d + N
23 22 eleq1d x = a + m d x + N 1 M a + m d + N 1 M
24 elfznn x 1 W x
25 nnaddcl x N x + N
26 24 4 25 syl2anr φ x 1 W x + N
27 nnuz = 1
28 26 27 eleqtrdi φ x 1 W x + N 1
29 elfzuz3 x 1 W W x
30 4 nnzd φ N
31 eluzadd W x N W + N x + N
32 29 30 31 syl2anr φ x 1 W W + N x + N
33 uztrn M W + N W + N x + N M x + N
34 6 32 33 syl2an2r φ x 1 W M x + N
35 elfzuzb x + N 1 M x + N 1 M x + N
36 28 34 35 sylanbrc φ x 1 W x + N 1 M
37 36 ralrimiva φ x 1 W x + N 1 M
38 37 ad3antrrr φ a d a AP K d G -1 c m 0 K 1 x 1 W x + N 1 M
39 simplrr φ a d a AP K d G -1 c m 0 K 1 a AP K d G -1 c
40 eqid a + m d = a + m d
41 oveq1 n = m n d = m d
42 41 oveq2d n = m a + n d = a + m d
43 42 rspceeqv m 0 K 1 a + m d = a + m d n 0 K 1 a + m d = a + n d
44 40 43 mpan2 m 0 K 1 n 0 K 1 a + m d = a + n d
45 44 adantl φ a d a AP K d G -1 c m 0 K 1 n 0 K 1 a + m d = a + n d
46 2 ad2antrr φ a d a AP K d G -1 c K 0
47 46 adantr φ a d a AP K d G -1 c m 0 K 1 K 0
48 vdwapval K 0 a d a + m d a AP K d n 0 K 1 a + m d = a + n d
49 47 11 18 48 syl3anc φ a d a AP K d G -1 c m 0 K 1 a + m d a AP K d n 0 K 1 a + m d = a + n d
50 45 49 mpbird φ a d a AP K d G -1 c m 0 K 1 a + m d a AP K d
51 39 50 sseldd φ a d a AP K d G -1 c m 0 K 1 a + m d G -1 c
52 5 ffvelrnda φ x + N 1 M F x + N R
53 36 52 syldan φ x 1 W F x + N R
54 53 7 fmptd φ G : 1 W R
55 54 ffnd φ G Fn 1 W
56 55 ad3antrrr φ a d a AP K d G -1 c m 0 K 1 G Fn 1 W
57 fniniseg G Fn 1 W a + m d G -1 c a + m d 1 W G a + m d = c
58 56 57 syl φ a d a AP K d G -1 c m 0 K 1 a + m d G -1 c a + m d 1 W G a + m d = c
59 51 58 mpbid φ a d a AP K d G -1 c m 0 K 1 a + m d 1 W G a + m d = c
60 59 simpld φ a d a AP K d G -1 c m 0 K 1 a + m d 1 W
61 23 38 60 rspcdva φ a d a AP K d G -1 c m 0 K 1 a + m d + N 1 M
62 21 61 eqeltrd φ a d a AP K d G -1 c m 0 K 1 a + N + m d 1 M
63 21 fveq2d φ a d a AP K d G -1 c m 0 K 1 F a + N + m d = F a + m d + N
64 22 fveq2d x = a + m d F x + N = F a + m d + N
65 fvex F a + m d + N V
66 64 7 65 fvmpt a + m d 1 W G a + m d = F a + m d + N
67 60 66 syl φ a d a AP K d G -1 c m 0 K 1 G a + m d = F a + m d + N
68 59 simprd φ a d a AP K d G -1 c m 0 K 1 G a + m d = c
69 63 67 68 3eqtr2d φ a d a AP K d G -1 c m 0 K 1 F a + N + m d = c
70 62 69 jca φ a d a AP K d G -1 c m 0 K 1 a + N + m d 1 M F a + N + m d = c
71 eleq1 x = a + N + m d x 1 M a + N + m d 1 M
72 fveqeq2 x = a + N + m d F x = c F a + N + m d = c
73 71 72 anbi12d x = a + N + m d x 1 M F x = c a + N + m d 1 M F a + N + m d = c
74 70 73 syl5ibrcom φ a d a AP K d G -1 c m 0 K 1 x = a + N + m d x 1 M F x = c
75 74 rexlimdva φ a d a AP K d G -1 c m 0 K 1 x = a + N + m d x 1 M F x = c
76 10 adantr φ a d a AP K d G -1 c a + N
77 simprl φ a d a AP K d G -1 c d
78 vdwapval K 0 a + N d x a + N AP K d m 0 K 1 x = a + N + m d
79 46 76 77 78 syl3anc φ a d a AP K d G -1 c x a + N AP K d m 0 K 1 x = a + N + m d
80 5 ffnd φ F Fn 1 M
81 80 ad2antrr φ a d a AP K d G -1 c F Fn 1 M
82 fniniseg F Fn 1 M x F -1 c x 1 M F x = c
83 81 82 syl φ a d a AP K d G -1 c x F -1 c x 1 M F x = c
84 75 79 83 3imtr4d φ a d a AP K d G -1 c x a + N AP K d x F -1 c
85 84 ssrdv φ a d a AP K d G -1 c a + N AP K d F -1 c
86 85 expr φ a d a AP K d G -1 c a + N AP K d F -1 c
87 86 reximdva φ a d a AP K d G -1 c d a + N AP K d F -1 c
88 oveq1 b = a + N b AP K d = a + N AP K d
89 88 sseq1d b = a + N b AP K d F -1 c a + N AP K d F -1 c
90 89 rexbidv b = a + N d b AP K d F -1 c d a + N AP K d F -1 c
91 90 rspcev a + N d a + N AP K d F -1 c b d b AP K d F -1 c
92 10 87 91 syl6an φ a d a AP K d G -1 c b d b AP K d F -1 c
93 92 rexlimdva φ a d a AP K d G -1 c b d b AP K d F -1 c
94 93 eximdv φ c a d a AP K d G -1 c c b d b AP K d F -1 c
95 ovex 1 W V
96 95 2 54 vdwmc φ K MonoAP G c a d a AP K d G -1 c
97 ovex 1 M V
98 97 2 5 vdwmc φ K MonoAP F c b d b AP K d F -1 c
99 94 96 98 3imtr4d φ K MonoAP G K MonoAP F