| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem2.r |  | 
						
							| 2 |  | vdwlem2.k |  | 
						
							| 3 |  | vdwlem2.w |  | 
						
							| 4 |  | vdwlem2.n |  | 
						
							| 5 |  | vdwlem2.f |  | 
						
							| 6 |  | vdwlem2.m |  | 
						
							| 7 |  | vdwlem2.g |  | 
						
							| 8 |  | id |  | 
						
							| 9 |  | nnaddcl |  | 
						
							| 10 | 8 4 9 | syl2anr |  | 
						
							| 11 |  | simpllr |  | 
						
							| 12 | 11 | nncnd |  | 
						
							| 13 | 4 | ad3antrrr |  | 
						
							| 14 | 13 | nncnd |  | 
						
							| 15 |  | elfznn0 |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 16 | nn0cnd |  | 
						
							| 18 |  | simplrl |  | 
						
							| 19 | 18 | nncnd |  | 
						
							| 20 | 17 19 | mulcld |  | 
						
							| 21 | 12 14 20 | add32d |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 22 | eleq1d |  | 
						
							| 24 |  | elfznn |  | 
						
							| 25 |  | nnaddcl |  | 
						
							| 26 | 24 4 25 | syl2anr |  | 
						
							| 27 |  | nnuz |  | 
						
							| 28 | 26 27 | eleqtrdi |  | 
						
							| 29 |  | elfzuz3 |  | 
						
							| 30 | 4 | nnzd |  | 
						
							| 31 |  | eluzadd |  | 
						
							| 32 | 29 30 31 | syl2anr |  | 
						
							| 33 |  | uztrn |  | 
						
							| 34 | 6 32 33 | syl2an2r |  | 
						
							| 35 |  | elfzuzb |  | 
						
							| 36 | 28 34 35 | sylanbrc |  | 
						
							| 37 | 36 | ralrimiva |  | 
						
							| 38 | 37 | ad3antrrr |  | 
						
							| 39 |  | simplrr |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | oveq1 |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 | 42 | rspceeqv |  | 
						
							| 44 | 40 43 | mpan2 |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 2 | ad2antrr |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 |  | vdwapval |  | 
						
							| 49 | 47 11 18 48 | syl3anc |  | 
						
							| 50 | 45 49 | mpbird |  | 
						
							| 51 | 39 50 | sseldd |  | 
						
							| 52 | 5 | ffvelcdmda |  | 
						
							| 53 | 36 52 | syldan |  | 
						
							| 54 | 53 7 | fmptd |  | 
						
							| 55 | 54 | ffnd |  | 
						
							| 56 | 55 | ad3antrrr |  | 
						
							| 57 |  | fniniseg |  | 
						
							| 58 | 56 57 | syl |  | 
						
							| 59 | 51 58 | mpbid |  | 
						
							| 60 | 59 | simpld |  | 
						
							| 61 | 23 38 60 | rspcdva |  | 
						
							| 62 | 21 61 | eqeltrd |  | 
						
							| 63 | 21 | fveq2d |  | 
						
							| 64 | 22 | fveq2d |  | 
						
							| 65 |  | fvex |  | 
						
							| 66 | 64 7 65 | fvmpt |  | 
						
							| 67 | 60 66 | syl |  | 
						
							| 68 | 59 | simprd |  | 
						
							| 69 | 63 67 68 | 3eqtr2d |  | 
						
							| 70 | 62 69 | jca |  | 
						
							| 71 |  | eleq1 |  | 
						
							| 72 |  | fveqeq2 |  | 
						
							| 73 | 71 72 | anbi12d |  | 
						
							| 74 | 70 73 | syl5ibrcom |  | 
						
							| 75 | 74 | rexlimdva |  | 
						
							| 76 | 10 | adantr |  | 
						
							| 77 |  | simprl |  | 
						
							| 78 |  | vdwapval |  | 
						
							| 79 | 46 76 77 78 | syl3anc |  | 
						
							| 80 | 5 | ffnd |  | 
						
							| 81 | 80 | ad2antrr |  | 
						
							| 82 |  | fniniseg |  | 
						
							| 83 | 81 82 | syl |  | 
						
							| 84 | 75 79 83 | 3imtr4d |  | 
						
							| 85 | 84 | ssrdv |  | 
						
							| 86 | 85 | expr |  | 
						
							| 87 | 86 | reximdva |  | 
						
							| 88 |  | oveq1 |  | 
						
							| 89 | 88 | sseq1d |  | 
						
							| 90 | 89 | rexbidv |  | 
						
							| 91 | 90 | rspcev |  | 
						
							| 92 | 10 87 91 | syl6an |  | 
						
							| 93 | 92 | rexlimdva |  | 
						
							| 94 | 93 | eximdv |  | 
						
							| 95 |  | ovex |  | 
						
							| 96 | 95 2 54 | vdwmc |  | 
						
							| 97 |  | ovex |  | 
						
							| 98 | 97 2 5 | vdwmc |  | 
						
							| 99 | 94 96 98 | 3imtr4d |  |