Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
⊢ 𝑋 ∈ V |
2 |
|
vdwmc.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
vdwmc.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑅 ) |
4 |
|
fex |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅 ∧ 𝑋 ∈ V ) → 𝐹 ∈ V ) |
5 |
3 1 4
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( AP ‘ 𝑘 ) = ( AP ‘ 𝐾 ) ) |
7 |
6
|
rneqd |
⊢ ( 𝑘 = 𝐾 → ran ( AP ‘ 𝑘 ) = ran ( AP ‘ 𝐾 ) ) |
8 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
9 |
8
|
imaeq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝐹 “ { 𝑐 } ) ) |
10 |
9
|
pweqd |
⊢ ( 𝑓 = 𝐹 → 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) = 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) |
11 |
7 10
|
ineqan12d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) = ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
12 |
11
|
neeq1d |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ ↔ ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ) ) |
13 |
12
|
exbidv |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑓 = 𝐹 ) → ( ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ ↔ ∃ 𝑐 ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ) ) |
14 |
|
df-vdwmc |
⊢ MonoAP = { 〈 𝑘 , 𝑓 〉 ∣ ∃ 𝑐 ( ran ( AP ‘ 𝑘 ) ∩ 𝒫 ( ◡ 𝑓 “ { 𝑐 } ) ) ≠ ∅ } |
15 |
13 14
|
brabga |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐹 ∈ V ) → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ) ) |
16 |
2 5 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ) ) |
17 |
|
vdwapf |
⊢ ( 𝐾 ∈ ℕ0 → ( AP ‘ 𝐾 ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ ) |
18 |
|
ffn |
⊢ ( ( AP ‘ 𝐾 ) : ( ℕ × ℕ ) ⟶ 𝒫 ℕ → ( AP ‘ 𝐾 ) Fn ( ℕ × ℕ ) ) |
19 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ 𝑧 ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
20 |
|
sseq1 |
⊢ ( 𝑧 = ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) → ( 𝑧 ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
21 |
19 20
|
syl5bb |
⊢ ( 𝑧 = ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) → ( 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
22 |
21
|
rexrn |
⊢ ( ( AP ‘ 𝐾 ) Fn ( ℕ × ℕ ) → ( ∃ 𝑧 ∈ ran ( AP ‘ 𝐾 ) 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑤 ∈ ( ℕ × ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
23 |
2 17 18 22
|
4syl |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ran ( AP ‘ 𝐾 ) 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑤 ∈ ( ℕ × ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
24 |
|
elin |
⊢ ( 𝑧 ∈ ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( 𝑧 ∈ ran ( AP ‘ 𝐾 ) ∧ 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
25 |
24
|
exbii |
⊢ ( ∃ 𝑧 𝑧 ∈ ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ ran ( AP ‘ 𝐾 ) ∧ 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
26 |
|
n0 |
⊢ ( ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
27 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ran ( AP ‘ 𝐾 ) 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑧 ( 𝑧 ∈ ran ( AP ‘ 𝐾 ) ∧ 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
28 |
25 26 27
|
3bitr4ri |
⊢ ( ∃ 𝑧 ∈ ran ( AP ‘ 𝐾 ) 𝑧 ∈ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ) |
29 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑎 , 𝑑 〉 → ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) = ( ( AP ‘ 𝐾 ) ‘ 〈 𝑎 , 𝑑 〉 ) ) |
30 |
|
df-ov |
⊢ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ( ( AP ‘ 𝐾 ) ‘ 〈 𝑎 , 𝑑 〉 ) |
31 |
29 30
|
eqtr4di |
⊢ ( 𝑤 = 〈 𝑎 , 𝑑 〉 → ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) = ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
32 |
31
|
sseq1d |
⊢ ( 𝑤 = 〈 𝑎 , 𝑑 〉 → ( ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
33 |
32
|
rexxp |
⊢ ( ∃ 𝑤 ∈ ( ℕ × ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
34 |
23 28 33
|
3bitr3g |
⊢ ( 𝜑 → ( ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
35 |
34
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑐 ( ran ( AP ‘ 𝐾 ) ∩ 𝒫 ( ◡ 𝐹 “ { 𝑐 } ) ) ≠ ∅ ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
36 |
16 35
|
bitrd |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |