| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwmc.1 | ⊢ 𝑋  ∈  V | 
						
							| 2 |  | vdwmc.2 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 3 |  | vdwmc.3 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑅 ) | 
						
							| 4 |  | fex | ⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅  ∧  𝑋  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 5 | 3 1 4 | sylancl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( AP ‘ 𝑘 )  =  ( AP ‘ 𝐾 ) ) | 
						
							| 7 | 6 | rneqd | ⊢ ( 𝑘  =  𝐾  →  ran  ( AP ‘ 𝑘 )  =  ran  ( AP ‘ 𝐾 ) ) | 
						
							| 8 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 9 | 8 | imaeq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 10 | 9 | pweqd | ⊢ ( 𝑓  =  𝐹  →  𝒫  ( ◡ 𝑓  “  { 𝑐 } )  =  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 11 | 7 10 | ineqan12d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ran  ( AP ‘ 𝑘 )  ∩  𝒫  ( ◡ 𝑓  “  { 𝑐 } ) )  =  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 12 | 11 | neeq1d | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ( ran  ( AP ‘ 𝑘 )  ∩  𝒫  ( ◡ 𝑓  “  { 𝑐 } ) )  ≠  ∅  ↔  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅ ) ) | 
						
							| 13 | 12 | exbidv | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑓  =  𝐹 )  →  ( ∃ 𝑐 ( ran  ( AP ‘ 𝑘 )  ∩  𝒫  ( ◡ 𝑓  “  { 𝑐 } ) )  ≠  ∅  ↔  ∃ 𝑐 ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅ ) ) | 
						
							| 14 |  | df-vdwmc | ⊢  MonoAP   =  { 〈 𝑘 ,  𝑓 〉  ∣  ∃ 𝑐 ( ran  ( AP ‘ 𝑘 )  ∩  𝒫  ( ◡ 𝑓  “  { 𝑐 } ) )  ≠  ∅ } | 
						
							| 15 | 13 14 | brabga | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐹  ∈  V )  →  ( 𝐾  MonoAP  𝐹  ↔  ∃ 𝑐 ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅ ) ) | 
						
							| 16 | 2 5 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐹  ↔  ∃ 𝑐 ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅ ) ) | 
						
							| 17 |  | vdwapf | ⊢ ( 𝐾  ∈  ℕ0  →  ( AP ‘ 𝐾 ) : ( ℕ  ×  ℕ ) ⟶ 𝒫  ℕ ) | 
						
							| 18 |  | ffn | ⊢ ( ( AP ‘ 𝐾 ) : ( ℕ  ×  ℕ ) ⟶ 𝒫  ℕ  →  ( AP ‘ 𝐾 )  Fn  ( ℕ  ×  ℕ ) ) | 
						
							| 19 |  | velpw | ⊢ ( 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  𝑧  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 20 |  | sseq1 | ⊢ ( 𝑧  =  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  →  ( 𝑧  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 21 | 19 20 | bitrid | ⊢ ( 𝑧  =  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  →  ( 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 22 | 21 | rexrn | ⊢ ( ( AP ‘ 𝐾 )  Fn  ( ℕ  ×  ℕ )  →  ( ∃ 𝑧  ∈  ran  ( AP ‘ 𝐾 ) 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑤  ∈  ( ℕ  ×  ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 23 | 2 17 18 22 | 4syl | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ran  ( AP ‘ 𝐾 ) 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑤  ∈  ( ℕ  ×  ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 24 |  | elin | ⊢ ( 𝑧  ∈  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ↔  ( 𝑧  ∈  ran  ( AP ‘ 𝐾 )  ∧  𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 25 | 24 | exbii | ⊢ ( ∃ 𝑧 𝑧  ∈  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ↔  ∃ 𝑧 ( 𝑧  ∈  ran  ( AP ‘ 𝐾 )  ∧  𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 26 |  | n0 | ⊢ ( ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 27 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  ran  ( AP ‘ 𝐾 ) 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑧 ( 𝑧  ∈  ran  ( AP ‘ 𝐾 )  ∧  𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 28 | 25 26 27 | 3bitr4ri | ⊢ ( ∃ 𝑧  ∈  ran  ( AP ‘ 𝐾 ) 𝑧  ∈  𝒫  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅ ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑤  =  〈 𝑎 ,  𝑑 〉  →  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( AP ‘ 𝐾 ) ‘ 〈 𝑎 ,  𝑑 〉 ) ) | 
						
							| 30 |  | df-ov | ⊢ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  =  ( ( AP ‘ 𝐾 ) ‘ 〈 𝑎 ,  𝑑 〉 ) | 
						
							| 31 | 29 30 | eqtr4di | ⊢ ( 𝑤  =  〈 𝑎 ,  𝑑 〉  →  ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  =  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) | 
						
							| 32 | 31 | sseq1d | ⊢ ( 𝑤  =  〈 𝑎 ,  𝑑 〉  →  ( ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 33 | 32 | rexxp | ⊢ ( ∃ 𝑤  ∈  ( ℕ  ×  ℕ ) ( ( AP ‘ 𝐾 ) ‘ 𝑤 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 34 | 23 28 33 | 3bitr3g | ⊢ ( 𝜑  →  ( ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 35 | 34 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑐 ( ran  ( AP ‘ 𝐾 )  ∩  𝒫  ( ◡ 𝐹  “  { 𝑐 } ) )  ≠  ∅  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 36 | 16 35 | bitrd | ⊢ ( 𝜑  →  ( 𝐾  MonoAP  𝐹  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) |