Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
⊢ 𝑋 ∈ V |
2 |
|
vdwmc.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
vdwmc.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑅 ) |
4 |
|
vdwmc2.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
5 |
1 2 3
|
vdwmc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
6 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑎 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
7 |
6
|
ne0d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
8 |
7
|
3expb |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
10 |
|
ssn0 |
⊢ ( ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) |
11 |
10
|
expcom |
⊢ ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) ) |
12 |
9 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) ) |
13 |
|
disjsn |
⊢ ( ( 𝑅 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑅 ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑅 ) |
15 |
|
fimacnvdisj |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅 ∧ ( 𝑅 ∩ { 𝑐 } ) = ∅ ) → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) |
16 |
15
|
ex |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑅 → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
17 |
14 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
19 |
13 18
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ¬ 𝑐 ∈ 𝑅 → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
20 |
19
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ → 𝑐 ∈ 𝑅 ) ) |
21 |
12 20
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → 𝑐 ∈ 𝑅 ) ) |
22 |
21
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → 𝑐 ∈ 𝑅 ) ) |
23 |
22
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
24 |
23
|
exbidv |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
25 |
|
df-rex |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
26 |
24 25
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
27 |
3 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ) |
28 |
27
|
ne0d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
29 |
|
1nn |
⊢ 1 ∈ ℕ |
30 |
29
|
ne0ii |
⊢ ℕ ≠ ∅ |
31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → 𝐾 = 0 ) |
32 |
31
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( AP ‘ 𝐾 ) = ( AP ‘ 0 ) ) |
33 |
32
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ( 𝑎 ( AP ‘ 0 ) 𝑑 ) ) |
34 |
|
vdwap0 |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 0 ) 𝑑 ) = ∅ ) |
35 |
34
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 0 ) 𝑑 ) = ∅ ) |
36 |
33 35
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ∅ ) |
37 |
|
0ss |
⊢ ∅ ⊆ ( ◡ 𝐹 “ { 𝑐 } ) |
38 |
36 37
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
39 |
38
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) → ∀ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
40 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
41 |
30 39 40
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) → ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∀ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
43 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
44 |
30 42 43
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
45 |
44
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∀ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
46 |
|
r19.2z |
⊢ ( ( 𝑅 ≠ ∅ ∧ ∀ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
47 |
28 45 46
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
48 |
|
rexex |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
50 |
49 47
|
2thd |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
51 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
52 |
2 51
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
53 |
26 50 52
|
mpjaodan |
⊢ ( 𝜑 → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
54 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
55 |
54
|
3expb |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
56 |
2 55
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
57 |
56
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
58 |
57
|
albidv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
59 |
|
dfss2 |
⊢ ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
60 |
|
ralcom4 |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
61 |
|
ovex |
⊢ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ V |
62 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
63 |
61 62
|
ceqsalv |
⊢ ( ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
64 |
63
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
65 |
|
r19.23v |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
66 |
65
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
67 |
60 64 66
|
3bitr3i |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
68 |
58 59 67
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
69 |
68
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
70 |
69
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
71 |
5 53 70
|
3bitrd |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |