| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwmc.1 |
⊢ 𝑋 ∈ V |
| 2 |
|
vdwmc.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 3 |
|
vdwmc.3 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑅 ) |
| 4 |
|
vdwmc2.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 5 |
1 2 3
|
vdwmc |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 6 |
|
vdwapid1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → 𝑎 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ) |
| 7 |
6
|
ne0d |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
| 9 |
8
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) |
| 10 |
|
ssn0 |
⊢ ( ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ∧ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) |
| 11 |
10
|
expcom |
⊢ ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ≠ ∅ → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ ) ) |
| 13 |
|
disjsn |
⊢ ( ( 𝑅 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑅 ) |
| 14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑅 ) |
| 15 |
|
fimacnvdisj |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑅 ∧ ( 𝑅 ∩ { 𝑐 } ) = ∅ ) → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) |
| 16 |
15
|
ex |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑅 → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑅 ∩ { 𝑐 } ) = ∅ → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
| 19 |
13 18
|
biimtrrid |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ¬ 𝑐 ∈ 𝑅 → ( ◡ 𝐹 “ { 𝑐 } ) = ∅ ) ) |
| 20 |
19
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( ◡ 𝐹 “ { 𝑐 } ) ≠ ∅ → 𝑐 ∈ 𝑅 ) ) |
| 21 |
12 20
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → 𝑐 ∈ 𝑅 ) ) |
| 22 |
21
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → 𝑐 ∈ 𝑅 ) ) |
| 23 |
22
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
| 24 |
23
|
exbidv |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
| 25 |
|
df-rex |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ( 𝑐 ∈ 𝑅 ∧ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 26 |
24 25
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ℕ ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 27 |
3 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑅 ) |
| 28 |
27
|
ne0d |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
| 29 |
|
1nn |
⊢ 1 ∈ ℕ |
| 30 |
29
|
ne0ii |
⊢ ℕ ≠ ∅ |
| 31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → 𝐾 = 0 ) |
| 32 |
31
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( AP ‘ 𝐾 ) = ( AP ‘ 0 ) ) |
| 33 |
32
|
oveqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ( 𝑎 ( AP ‘ 0 ) 𝑑 ) ) |
| 34 |
|
vdwap0 |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 0 ) 𝑑 ) = ∅ ) |
| 35 |
34
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 0 ) 𝑑 ) = ∅ ) |
| 36 |
33 35
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) = ∅ ) |
| 37 |
|
0ss |
⊢ ∅ ⊆ ( ◡ 𝐹 “ { 𝑐 } ) |
| 38 |
36 37
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) ∧ 𝑑 ∈ ℕ ) → ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 39 |
38
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) → ∀ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 40 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 41 |
30 39 40
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐾 = 0 ) ∧ 𝑎 ∈ ℕ ) → ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∀ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 43 |
|
r19.2z |
⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 44 |
30 42 43
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 45 |
44
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∀ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 46 |
|
r19.2z |
⊢ ( ( 𝑅 ≠ ∅ ∧ ∀ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 47 |
28 45 46
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 48 |
|
rexex |
⊢ ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 50 |
49 47
|
2thd |
⊢ ( ( 𝜑 ∧ 𝐾 = 0 ) → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 51 |
|
elnn0 |
⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
| 52 |
2 51
|
sylib |
⊢ ( 𝜑 → ( 𝐾 ∈ ℕ ∨ 𝐾 = 0 ) ) |
| 53 |
26 50 52
|
mpjaodan |
⊢ ( 𝜑 → ( ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 54 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
| 55 |
54
|
3expb |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
| 56 |
2 55
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) ) ) |
| 57 |
56
|
imbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
| 58 |
57
|
albidv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) ) |
| 59 |
|
df-ss |
⊢ ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 60 |
|
ralcom4 |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 61 |
|
ovex |
⊢ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ V |
| 62 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 63 |
61 62
|
ceqsalv |
⊢ ( ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 64 |
63
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∀ 𝑥 ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 65 |
|
r19.23v |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 66 |
65
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 67 |
60 64 66
|
3bitr3i |
⊢ ( ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑥 ( ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) 𝑥 = ( 𝑎 + ( 𝑚 · 𝑑 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 68 |
58 59 67
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ ) ) → ( ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 69 |
68
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 70 |
69
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 𝐾 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 71 |
5 53 70
|
3bitrd |
⊢ ( 𝜑 → ( 𝐾 MonoAP 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ∀ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝑎 + ( 𝑚 · 𝑑 ) ) ∈ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |