Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
|- X e. _V |
2 |
|
vdwmc.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
vdwmc.3 |
|- ( ph -> F : X --> R ) |
4 |
|
vdwmc2.4 |
|- ( ph -> A e. X ) |
5 |
1 2 3
|
vdwmc |
|- ( ph -> ( K MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
6 |
|
vdwapid1 |
|- ( ( K e. NN /\ a e. NN /\ d e. NN ) -> a e. ( a ( AP ` K ) d ) ) |
7 |
6
|
ne0d |
|- ( ( K e. NN /\ a e. NN /\ d e. NN ) -> ( a ( AP ` K ) d ) =/= (/) ) |
8 |
7
|
3expb |
|- ( ( K e. NN /\ ( a e. NN /\ d e. NN ) ) -> ( a ( AP ` K ) d ) =/= (/) ) |
9 |
8
|
adantll |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( a ( AP ` K ) d ) =/= (/) ) |
10 |
|
ssn0 |
|- ( ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) /\ ( a ( AP ` K ) d ) =/= (/) ) -> ( `' F " { c } ) =/= (/) ) |
11 |
10
|
expcom |
|- ( ( a ( AP ` K ) d ) =/= (/) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) -> ( `' F " { c } ) =/= (/) ) ) |
12 |
9 11
|
syl |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) -> ( `' F " { c } ) =/= (/) ) ) |
13 |
|
disjsn |
|- ( ( R i^i { c } ) = (/) <-> -. c e. R ) |
14 |
3
|
adantr |
|- ( ( ph /\ K e. NN ) -> F : X --> R ) |
15 |
|
fimacnvdisj |
|- ( ( F : X --> R /\ ( R i^i { c } ) = (/) ) -> ( `' F " { c } ) = (/) ) |
16 |
15
|
ex |
|- ( F : X --> R -> ( ( R i^i { c } ) = (/) -> ( `' F " { c } ) = (/) ) ) |
17 |
14 16
|
syl |
|- ( ( ph /\ K e. NN ) -> ( ( R i^i { c } ) = (/) -> ( `' F " { c } ) = (/) ) ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( ( R i^i { c } ) = (/) -> ( `' F " { c } ) = (/) ) ) |
19 |
13 18
|
syl5bir |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( -. c e. R -> ( `' F " { c } ) = (/) ) ) |
20 |
19
|
necon1ad |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( ( `' F " { c } ) =/= (/) -> c e. R ) ) |
21 |
12 20
|
syld |
|- ( ( ( ph /\ K e. NN ) /\ ( a e. NN /\ d e. NN ) ) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) -> c e. R ) ) |
22 |
21
|
rexlimdvva |
|- ( ( ph /\ K e. NN ) -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) -> c e. R ) ) |
23 |
22
|
pm4.71rd |
|- ( ( ph /\ K e. NN ) -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> ( c e. R /\ E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) ) |
24 |
23
|
exbidv |
|- ( ( ph /\ K e. NN ) -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c ( c e. R /\ E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) ) |
25 |
|
df-rex |
|- ( E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c ( c e. R /\ E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
26 |
24 25
|
bitr4di |
|- ( ( ph /\ K e. NN ) -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
27 |
3 4
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. R ) |
28 |
27
|
ne0d |
|- ( ph -> R =/= (/) ) |
29 |
|
1nn |
|- 1 e. NN |
30 |
29
|
ne0ii |
|- NN =/= (/) |
31 |
|
simpllr |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> K = 0 ) |
32 |
31
|
fveq2d |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> ( AP ` K ) = ( AP ` 0 ) ) |
33 |
32
|
oveqd |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> ( a ( AP ` K ) d ) = ( a ( AP ` 0 ) d ) ) |
34 |
|
vdwap0 |
|- ( ( a e. NN /\ d e. NN ) -> ( a ( AP ` 0 ) d ) = (/) ) |
35 |
34
|
adantll |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> ( a ( AP ` 0 ) d ) = (/) ) |
36 |
33 35
|
eqtrd |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> ( a ( AP ` K ) d ) = (/) ) |
37 |
|
0ss |
|- (/) C_ ( `' F " { c } ) |
38 |
36 37
|
eqsstrdi |
|- ( ( ( ( ph /\ K = 0 ) /\ a e. NN ) /\ d e. NN ) -> ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
39 |
38
|
ralrimiva |
|- ( ( ( ph /\ K = 0 ) /\ a e. NN ) -> A. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
40 |
|
r19.2z |
|- ( ( NN =/= (/) /\ A. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) -> E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
41 |
30 39 40
|
sylancr |
|- ( ( ( ph /\ K = 0 ) /\ a e. NN ) -> E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
42 |
41
|
ralrimiva |
|- ( ( ph /\ K = 0 ) -> A. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
43 |
|
r19.2z |
|- ( ( NN =/= (/) /\ A. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
44 |
30 42 43
|
sylancr |
|- ( ( ph /\ K = 0 ) -> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
45 |
44
|
ralrimivw |
|- ( ( ph /\ K = 0 ) -> A. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
46 |
|
r19.2z |
|- ( ( R =/= (/) /\ A. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) -> E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
47 |
28 45 46
|
syl2an2r |
|- ( ( ph /\ K = 0 ) -> E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
48 |
|
rexex |
|- ( E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
49 |
47 48
|
syl |
|- ( ( ph /\ K = 0 ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
50 |
49 47
|
2thd |
|- ( ( ph /\ K = 0 ) -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
51 |
|
elnn0 |
|- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
52 |
2 51
|
sylib |
|- ( ph -> ( K e. NN \/ K = 0 ) ) |
53 |
26 50 52
|
mpjaodan |
|- ( ph -> ( E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
54 |
|
vdwapval |
|- ( ( K e. NN0 /\ a e. NN /\ d e. NN ) -> ( x e. ( a ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) ) ) |
55 |
54
|
3expb |
|- ( ( K e. NN0 /\ ( a e. NN /\ d e. NN ) ) -> ( x e. ( a ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) ) ) |
56 |
2 55
|
sylan |
|- ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( x e. ( a ( AP ` K ) d ) <-> E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) ) ) |
57 |
56
|
imbi1d |
|- ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( ( x e. ( a ( AP ` K ) d ) -> x e. ( `' F " { c } ) ) <-> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) ) |
58 |
57
|
albidv |
|- ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( A. x ( x e. ( a ( AP ` K ) d ) -> x e. ( `' F " { c } ) ) <-> A. x ( E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) ) |
59 |
|
dfss2 |
|- ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> A. x ( x e. ( a ( AP ` K ) d ) -> x e. ( `' F " { c } ) ) ) |
60 |
|
ralcom4 |
|- ( A. m e. ( 0 ... ( K - 1 ) ) A. x ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) <-> A. x A. m e. ( 0 ... ( K - 1 ) ) ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) |
61 |
|
ovex |
|- ( a + ( m x. d ) ) e. _V |
62 |
|
eleq1 |
|- ( x = ( a + ( m x. d ) ) -> ( x e. ( `' F " { c } ) <-> ( a + ( m x. d ) ) e. ( `' F " { c } ) ) ) |
63 |
61 62
|
ceqsalv |
|- ( A. x ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) <-> ( a + ( m x. d ) ) e. ( `' F " { c } ) ) |
64 |
63
|
ralbii |
|- ( A. m e. ( 0 ... ( K - 1 ) ) A. x ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) <-> A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) ) |
65 |
|
r19.23v |
|- ( A. m e. ( 0 ... ( K - 1 ) ) ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) <-> ( E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) |
66 |
65
|
albii |
|- ( A. x A. m e. ( 0 ... ( K - 1 ) ) ( x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) <-> A. x ( E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) |
67 |
60 64 66
|
3bitr3i |
|- ( A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) <-> A. x ( E. m e. ( 0 ... ( K - 1 ) ) x = ( a + ( m x. d ) ) -> x e. ( `' F " { c } ) ) ) |
68 |
58 59 67
|
3bitr4g |
|- ( ( ph /\ ( a e. NN /\ d e. NN ) ) -> ( ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) ) ) |
69 |
68
|
2rexbidva |
|- ( ph -> ( E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) ) ) |
70 |
69
|
rexbidv |
|- ( ph -> ( E. c e. R E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) <-> E. c e. R E. a e. NN E. d e. NN A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) ) ) |
71 |
5 53 70
|
3bitrd |
|- ( ph -> ( K MonoAP F <-> E. c e. R E. a e. NN E. d e. NN A. m e. ( 0 ... ( K - 1 ) ) ( a + ( m x. d ) ) e. ( `' F " { c } ) ) ) |