Step |
Hyp |
Ref |
Expression |
1 |
|
vdwmc.1 |
|- X e. _V |
2 |
|
vdwmc.2 |
|- ( ph -> K e. NN0 ) |
3 |
|
vdwmc.3 |
|- ( ph -> F : X --> R ) |
4 |
|
fex |
|- ( ( F : X --> R /\ X e. _V ) -> F e. _V ) |
5 |
3 1 4
|
sylancl |
|- ( ph -> F e. _V ) |
6 |
|
fveq2 |
|- ( k = K -> ( AP ` k ) = ( AP ` K ) ) |
7 |
6
|
rneqd |
|- ( k = K -> ran ( AP ` k ) = ran ( AP ` K ) ) |
8 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
9 |
8
|
imaeq1d |
|- ( f = F -> ( `' f " { c } ) = ( `' F " { c } ) ) |
10 |
9
|
pweqd |
|- ( f = F -> ~P ( `' f " { c } ) = ~P ( `' F " { c } ) ) |
11 |
7 10
|
ineqan12d |
|- ( ( k = K /\ f = F ) -> ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) = ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) ) |
12 |
11
|
neeq1d |
|- ( ( k = K /\ f = F ) -> ( ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) <-> ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) |
13 |
12
|
exbidv |
|- ( ( k = K /\ f = F ) -> ( E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) |
14 |
|
df-vdwmc |
|- MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } |
15 |
13 14
|
brabga |
|- ( ( K e. NN0 /\ F e. _V ) -> ( K MonoAP F <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) |
16 |
2 5 15
|
syl2anc |
|- ( ph -> ( K MonoAP F <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) |
17 |
|
vdwapf |
|- ( K e. NN0 -> ( AP ` K ) : ( NN X. NN ) --> ~P NN ) |
18 |
|
ffn |
|- ( ( AP ` K ) : ( NN X. NN ) --> ~P NN -> ( AP ` K ) Fn ( NN X. NN ) ) |
19 |
|
velpw |
|- ( z e. ~P ( `' F " { c } ) <-> z C_ ( `' F " { c } ) ) |
20 |
|
sseq1 |
|- ( z = ( ( AP ` K ) ` w ) -> ( z C_ ( `' F " { c } ) <-> ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) |
21 |
19 20
|
syl5bb |
|- ( z = ( ( AP ` K ) ` w ) -> ( z e. ~P ( `' F " { c } ) <-> ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) |
22 |
21
|
rexrn |
|- ( ( AP ` K ) Fn ( NN X. NN ) -> ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) |
23 |
2 17 18 22
|
4syl |
|- ( ph -> ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) |
24 |
|
elin |
|- ( z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) <-> ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) |
25 |
24
|
exbii |
|- ( E. z z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) <-> E. z ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) |
26 |
|
n0 |
|- ( ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. z z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) ) |
27 |
|
df-rex |
|- ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. z ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) |
28 |
25 26 27
|
3bitr4ri |
|- ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) |
29 |
|
fveq2 |
|- ( w = <. a , d >. -> ( ( AP ` K ) ` w ) = ( ( AP ` K ) ` <. a , d >. ) ) |
30 |
|
df-ov |
|- ( a ( AP ` K ) d ) = ( ( AP ` K ) ` <. a , d >. ) |
31 |
29 30
|
eqtr4di |
|- ( w = <. a , d >. -> ( ( AP ` K ) ` w ) = ( a ( AP ` K ) d ) ) |
32 |
31
|
sseq1d |
|- ( w = <. a , d >. -> ( ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) <-> ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
33 |
32
|
rexxp |
|- ( E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) |
34 |
23 28 33
|
3bitr3g |
|- ( ph -> ( ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
35 |
34
|
exbidv |
|- ( ph -> ( E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |
36 |
16 35
|
bitrd |
|- ( ph -> ( K MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |