| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwmc.1 |  |-  X e. _V | 
						
							| 2 |  | vdwmc.2 |  |-  ( ph -> K e. NN0 ) | 
						
							| 3 |  | vdwmc.3 |  |-  ( ph -> F : X --> R ) | 
						
							| 4 |  | fex |  |-  ( ( F : X --> R /\ X e. _V ) -> F e. _V ) | 
						
							| 5 | 3 1 4 | sylancl |  |-  ( ph -> F e. _V ) | 
						
							| 6 |  | fveq2 |  |-  ( k = K -> ( AP ` k ) = ( AP ` K ) ) | 
						
							| 7 | 6 | rneqd |  |-  ( k = K -> ran ( AP ` k ) = ran ( AP ` K ) ) | 
						
							| 8 |  | cnveq |  |-  ( f = F -> `' f = `' F ) | 
						
							| 9 | 8 | imaeq1d |  |-  ( f = F -> ( `' f " { c } ) = ( `' F " { c } ) ) | 
						
							| 10 | 9 | pweqd |  |-  ( f = F -> ~P ( `' f " { c } ) = ~P ( `' F " { c } ) ) | 
						
							| 11 | 7 10 | ineqan12d |  |-  ( ( k = K /\ f = F ) -> ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) = ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) ) | 
						
							| 12 | 11 | neeq1d |  |-  ( ( k = K /\ f = F ) -> ( ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) <-> ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) | 
						
							| 13 | 12 | exbidv |  |-  ( ( k = K /\ f = F ) -> ( E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) | 
						
							| 14 |  | df-vdwmc |  |-  MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } | 
						
							| 15 | 13 14 | brabga |  |-  ( ( K e. NN0 /\ F e. _V ) -> ( K MonoAP F <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) | 
						
							| 16 | 2 5 15 | syl2anc |  |-  ( ph -> ( K MonoAP F <-> E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) ) | 
						
							| 17 |  | vdwapf |  |-  ( K e. NN0 -> ( AP ` K ) : ( NN X. NN ) --> ~P NN ) | 
						
							| 18 |  | ffn |  |-  ( ( AP ` K ) : ( NN X. NN ) --> ~P NN -> ( AP ` K ) Fn ( NN X. NN ) ) | 
						
							| 19 |  | velpw |  |-  ( z e. ~P ( `' F " { c } ) <-> z C_ ( `' F " { c } ) ) | 
						
							| 20 |  | sseq1 |  |-  ( z = ( ( AP ` K ) ` w ) -> ( z C_ ( `' F " { c } ) <-> ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) | 
						
							| 21 | 19 20 | bitrid |  |-  ( z = ( ( AP ` K ) ` w ) -> ( z e. ~P ( `' F " { c } ) <-> ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) | 
						
							| 22 | 21 | rexrn |  |-  ( ( AP ` K ) Fn ( NN X. NN ) -> ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) | 
						
							| 23 | 2 17 18 22 | 4syl |  |-  ( ph -> ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) ) ) | 
						
							| 24 |  | elin |  |-  ( z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) <-> ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) | 
						
							| 25 | 24 | exbii |  |-  ( E. z z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) <-> E. z ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) | 
						
							| 26 |  | n0 |  |-  ( ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. z z e. ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) ) | 
						
							| 27 |  | df-rex |  |-  ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> E. z ( z e. ran ( AP ` K ) /\ z e. ~P ( `' F " { c } ) ) ) | 
						
							| 28 | 25 26 27 | 3bitr4ri |  |-  ( E. z e. ran ( AP ` K ) z e. ~P ( `' F " { c } ) <-> ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) ) | 
						
							| 29 |  | fveq2 |  |-  ( w = <. a , d >. -> ( ( AP ` K ) ` w ) = ( ( AP ` K ) ` <. a , d >. ) ) | 
						
							| 30 |  | df-ov |  |-  ( a ( AP ` K ) d ) = ( ( AP ` K ) ` <. a , d >. ) | 
						
							| 31 | 29 30 | eqtr4di |  |-  ( w = <. a , d >. -> ( ( AP ` K ) ` w ) = ( a ( AP ` K ) d ) ) | 
						
							| 32 | 31 | sseq1d |  |-  ( w = <. a , d >. -> ( ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) <-> ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 33 | 32 | rexxp |  |-  ( E. w e. ( NN X. NN ) ( ( AP ` K ) ` w ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) | 
						
							| 34 | 23 28 33 | 3bitr3g |  |-  ( ph -> ( ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 35 | 34 | exbidv |  |-  ( ph -> ( E. c ( ran ( AP ` K ) i^i ~P ( `' F " { c } ) ) =/= (/) <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 36 | 16 35 | bitrd |  |-  ( ph -> ( K MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` K ) d ) C_ ( `' F " { c } ) ) ) |