Metamath Proof Explorer


Definition df-vdwmc

Description: Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion df-vdwmc
|- MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvdwm
 |-  MonoAP
1 vk
 |-  k
2 vf
 |-  f
3 vc
 |-  c
4 cvdwa
 |-  AP
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( AP ` k )
7 6 crn
 |-  ran ( AP ` k )
8 2 cv
 |-  f
9 8 ccnv
 |-  `' f
10 3 cv
 |-  c
11 10 csn
 |-  { c }
12 9 11 cima
 |-  ( `' f " { c } )
13 12 cpw
 |-  ~P ( `' f " { c } )
14 7 13 cin
 |-  ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) )
15 c0
 |-  (/)
16 14 15 wne
 |-  ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/)
17 16 3 wex
 |-  E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/)
18 17 1 2 copab
 |-  { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) }
19 0 18 wceq
 |-  MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) }