Description: Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-vdwmc | |- MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cvdwm | |- MonoAP |
|
1 | vk | |- k |
|
2 | vf | |- f |
|
3 | vc | |- c |
|
4 | cvdwa | |- AP |
|
5 | 1 | cv | |- k |
6 | 5 4 | cfv | |- ( AP ` k ) |
7 | 6 | crn | |- ran ( AP ` k ) |
8 | 2 | cv | |- f |
9 | 8 | ccnv | |- `' f |
10 | 3 | cv | |- c |
11 | 10 | csn | |- { c } |
12 | 9 11 | cima | |- ( `' f " { c } ) |
13 | 12 | cpw | |- ~P ( `' f " { c } ) |
14 | 7 13 | cin | |- ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) |
15 | c0 | |- (/) |
|
16 | 14 15 | wne | |- ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) |
17 | 16 3 | wex | |- E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) |
18 | 17 1 2 | copab | |- { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } |
19 | 0 18 | wceq | |- MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } |