Description: Define the "contains a monochromatic AP" predicate. (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-vdwmc | |- MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cvdwm | |- MonoAP | |
| 1 | vk | |- k | |
| 2 | vf | |- f | |
| 3 | vc | |- c | |
| 4 | cvdwa | |- AP | |
| 5 | 1 | cv | |- k | 
| 6 | 5 4 | cfv | |- ( AP ` k ) | 
| 7 | 6 | crn | |- ran ( AP ` k ) | 
| 8 | 2 | cv | |- f | 
| 9 | 8 | ccnv | |- `' f | 
| 10 | 3 | cv | |- c | 
| 11 | 10 | csn |  |-  { c } | 
| 12 | 9 11 | cima |  |-  ( `' f " { c } ) | 
| 13 | 12 | cpw |  |-  ~P ( `' f " { c } ) | 
| 14 | 7 13 | cin |  |-  ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) | 
| 15 | c0 | |- (/) | |
| 16 | 14 15 | wne |  |-  ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) | 
| 17 | 16 3 | wex |  |-  E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) | 
| 18 | 17 1 2 | copab |  |-  { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } | 
| 19 | 0 18 | wceq |  |-  MonoAP = { <. k , f >. | E. c ( ran ( AP ` k ) i^i ~P ( `' f " { c } ) ) =/= (/) } |