| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdwlem1.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem1.k | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 3 |  | vdwlem1.w | ⊢ ( 𝜑  →  𝑊  ∈  ℕ ) | 
						
							| 4 |  | vdwlem1.f | ⊢ ( 𝜑  →  𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) | 
						
							| 5 |  | vdwlem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 6 |  | vdwlem1.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | vdwlem1.d | ⊢ ( 𝜑  →  𝐷 : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 8 |  | vdwlem1.s | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 9 |  | vdwlem1.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 10 |  | vdwlem1.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) ) | 
						
							| 11 | 7 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐼 )  ∈  ℕ ) | 
						
							| 12 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 13 |  | vdwapun | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐴  ∈  ℕ  ∧  ( 𝐷 ‘ 𝐼 )  ∈  ℕ )  →  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) | 
						
							| 14 | 12 5 11 13 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) )  =  ( { 𝐴 }  ∪  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) | 
						
							| 15 | 5 | nnred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 | 6 16 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 18 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 20 | 7 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 1 )  ∈  ℕ ) | 
						
							| 21 | 5 20 | nnaddcld | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ∈  ℕ ) | 
						
							| 22 | 21 | nnred | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 23 | 3 | nnred | ⊢ ( 𝜑  →  𝑊  ∈  ℝ ) | 
						
							| 24 | 20 | nnrpd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 1 )  ∈  ℝ+ ) | 
						
							| 25 | 15 24 | ltaddrpd | ⊢ ( 𝜑  →  𝐴  <  ( 𝐴  +  ( 𝐷 ‘ 1 ) ) ) | 
						
							| 26 | 15 22 25 | ltled | ⊢ ( 𝜑  →  𝐴  ≤  ( 𝐴  +  ( 𝐷 ‘ 1 ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 1 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑖  =  1  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( 𝐴  +  ( 𝐷 ‘ 1 ) ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝑖  =  1  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 )  ↔  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ∈  ( 1 ... 𝑊 ) ) ) | 
						
							| 30 | 8 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } ) ) | 
						
							| 31 |  | cnvimass | ⊢ ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } )  ⊆  dom  𝐹 | 
						
							| 32 | 31 4 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } )  ⊆  ( 1 ... 𝑊 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } )  ⊆  ( 1 ... 𝑊 ) ) | 
						
							| 34 | 30 33 | sstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ⊆  ( 1 ... 𝑊 ) ) | 
						
							| 35 |  | nnm1nn0 | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 36 | 2 35 | syl | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ℕ0 ) | 
						
							| 37 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 38 | 36 37 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐾  −  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 39 |  | eluzfz1 | ⊢ ( ( 𝐾  −  1 )  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... ( 𝐾  −  1 ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... ( 𝐾  −  1 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ∈  ( 0 ... ( 𝐾  −  1 ) ) ) | 
						
							| 42 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑖 )  ∈  ℕ ) | 
						
							| 43 | 42 | nncnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 44 | 43 | mul02d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 0  ·  ( 𝐷 ‘ 𝑖 ) )  =  0 ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐷 ‘ 𝑖 ) ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  0 ) ) | 
						
							| 46 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 47 | 46 42 | nnaddcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ℕ ) | 
						
							| 48 | 47 | nncnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ℂ ) | 
						
							| 49 | 48 | addridd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  0 )  =  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 50 | 45 49 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 51 |  | oveq1 | ⊢ ( 𝑚  =  0  →  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) )  =  ( 0  ·  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( 𝑚  =  0  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 53 | 52 | rspceeqv | ⊢ ( ( 0  ∈  ( 0 ... ( 𝐾  −  1 ) )  ∧  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 0  ·  ( 𝐷 ‘ 𝑖 ) ) ) )  →  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 54 | 41 50 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 55 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℕ ) | 
						
							| 56 | 55 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 57 |  | vdwapval | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ℕ  ∧  ( 𝐷 ‘ 𝑖 )  ∈  ℕ )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) ) | 
						
							| 58 | 56 47 42 57 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ↔  ∃ 𝑚  ∈  ( 0 ... ( 𝐾  −  1 ) ) ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  +  ( 𝑚  ·  ( 𝐷 ‘ 𝑖 ) ) ) ) ) | 
						
							| 59 | 54 58 | mpbird | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 60 | 34 59 | sseldd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 61 | 60 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 62 | 29 61 19 | rspcdva | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 63 |  | elfzle2 | ⊢ ( ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ∈  ( 1 ... 𝑊 )  →  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ≤  𝑊 ) | 
						
							| 64 | 62 63 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐷 ‘ 1 ) )  ≤  𝑊 ) | 
						
							| 65 | 15 22 23 26 64 | letrd | ⊢ ( 𝜑  →  𝐴  ≤  𝑊 ) | 
						
							| 66 | 5 16 | eleqtrdi | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 67 | 3 | nnzd | ⊢ ( 𝜑  →  𝑊  ∈  ℤ ) | 
						
							| 68 |  | elfz5 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑊  ∈  ℤ )  →  ( 𝐴  ∈  ( 1 ... 𝑊 )  ↔  𝐴  ≤  𝑊 ) ) | 
						
							| 69 | 66 67 68 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 1 ... 𝑊 )  ↔  𝐴  ≤  𝑊 ) ) | 
						
							| 70 | 65 69 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  ( 1 ... 𝑊 ) ) | 
						
							| 71 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 72 |  | ffn | ⊢ ( 𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅  →  𝐹  Fn  ( 1 ... 𝑊 ) ) | 
						
							| 73 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... 𝑊 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ( 𝐴  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 74 | 4 72 73 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ( 𝐴  ∈  ( 1 ... 𝑊 )  ∧  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 75 | 70 71 74 | mpbir2and | ⊢ ( 𝜑  →  𝐴  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 76 | 75 | snssd | ⊢ ( 𝜑  →  { 𝐴 }  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑖  =  𝐼  →  ( 𝐷 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝐼 ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) )  =  ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) | 
						
							| 79 | 78 77 | oveq12d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  =  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) | 
						
							| 80 | 78 | fveq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) ) | 
						
							| 81 | 80 | sneqd | ⊢ ( 𝑖  =  𝐼  →  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) }  =  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) | 
						
							| 82 | 81 | imaeq2d | ⊢ ( 𝑖  =  𝐼  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) ) | 
						
							| 83 | 79 82 | sseq12d | ⊢ ( 𝑖  =  𝐼  →  ( ( ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝑖 ) ) ) } )  ↔  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) ) ) | 
						
							| 84 | 83 8 9 | rspcdva | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) ) | 
						
							| 85 | 10 | sneqd | ⊢ ( 𝜑  →  { ( 𝐹 ‘ 𝐴 ) }  =  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) | 
						
							| 86 | 85 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ) } ) ) | 
						
							| 87 | 84 86 | sseqtrrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 88 | 76 87 | unssd | ⊢ ( 𝜑  →  ( { 𝐴 }  ∪  ( ( 𝐴  +  ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 89 | 14 88 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 90 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  =  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 ) ) | 
						
							| 91 | 90 | sseq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) ) | 
						
							| 92 |  | oveq2 | ⊢ ( 𝑑  =  ( 𝐷 ‘ 𝐼 )  →  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  =  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) ) ) | 
						
							| 93 | 92 | sseq1d | ⊢ ( 𝑑  =  ( 𝐷 ‘ 𝐼 )  →  ( ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  ↔  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) ) | 
						
							| 94 | 91 93 | rspc2ev | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐷 ‘ 𝐼 )  ∈  ℕ  ∧  ( 𝐴 ( AP ‘ ( 𝐾  +  1 ) ) ( 𝐷 ‘ 𝐼 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 95 | 5 11 89 94 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 96 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 97 |  | sneq | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝐴 )  →  { 𝑐 }  =  { ( 𝐹 ‘ 𝐴 ) } ) | 
						
							| 98 | 97 | imaeq2d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝐴 )  →  ( ◡ 𝐹  “  { 𝑐 } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) | 
						
							| 99 | 98 | sseq2d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝐴 )  →  ( ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) ) | 
						
							| 100 | 99 | 2rexbidv | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝐴 )  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } ) ) ) | 
						
							| 101 | 96 100 | spcev | ⊢ ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝐴 ) } )  →  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 102 | 95 101 | syl | ⊢ ( 𝜑  →  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 103 |  | ovex | ⊢ ( 1 ... 𝑊 )  ∈  V | 
						
							| 104 |  | peano2nn0 | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 105 | 12 104 | syl | ⊢ ( 𝜑  →  ( 𝐾  +  1 )  ∈  ℕ0 ) | 
						
							| 106 | 103 105 4 | vdwmc | ⊢ ( 𝜑  →  ( ( 𝐾  +  1 )  MonoAP  𝐹  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ ( 𝐾  +  1 ) ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 107 | 102 106 | mpbird | ⊢ ( 𝜑  →  ( 𝐾  +  1 )  MonoAP  𝐹 ) |