Step |
Hyp |
Ref |
Expression |
1 |
|
vdwlem1.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwlem1.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
vdwlem1.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
4 |
|
vdwlem1.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
5 |
|
vdwlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
6 |
|
vdwlem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
vdwlem1.d |
⊢ ( 𝜑 → 𝐷 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
8 |
|
vdwlem1.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ) |
9 |
|
vdwlem1.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑀 ) ) |
10 |
|
vdwlem1.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) ) |
11 |
7 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) ∈ ℕ ) |
12 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
13 |
|
vdwapun |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ ( 𝐷 ‘ 𝐼 ) ∈ ℕ ) → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) = ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) |
14 |
12 5 11 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) = ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) |
15 |
5
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
6 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
18 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
20 |
7 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) ∈ ℕ ) |
21 |
5 20
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ℕ ) |
22 |
21
|
nnred |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ℝ ) |
23 |
3
|
nnred |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
24 |
20
|
nnrpd |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) ∈ ℝ+ ) |
25 |
15 24
|
ltaddrpd |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
26 |
15 22 25
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 1 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑖 = 1 → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑖 = 1 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ↔ ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) ) ) |
30 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ) |
31 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ dom 𝐹 |
32 |
31 4
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
34 |
30 33
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 1 ... 𝑊 ) ) |
35 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
36 |
2 35
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
37 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
38 |
36 37
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
39 |
|
eluzfz1 |
⊢ ( ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
42 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑖 ) ∈ ℕ ) |
43 |
42
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑖 ) ∈ ℂ ) |
44 |
43
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 0 · ( 𝐷 ‘ 𝑖 ) ) = 0 ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + 0 ) ) |
46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ∈ ℕ ) |
47 |
46 42
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℕ ) |
48 |
47
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℂ ) |
49 |
48
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + 0 ) = ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) |
50 |
45 49
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
51 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) = ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑚 = 0 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
53 |
52
|
rspceeqv |
⊢ ( ( 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) → ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
54 |
41 50 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
55 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ ) |
56 |
55
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ0 ) |
57 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℕ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℕ ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) ) |
58 |
56 47 42 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) ) |
59 |
54 58
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ) |
60 |
34 59
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ) |
61 |
60
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ) |
62 |
29 61 19
|
rspcdva |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) ) |
63 |
|
elfzle2 |
⊢ ( ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ≤ 𝑊 ) |
64 |
62 63
|
syl |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ≤ 𝑊 ) |
65 |
15 22 23 26 64
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ 𝑊 ) |
66 |
5 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
67 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑊 ∈ ℤ ) |
68 |
|
elfz5 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑊 ∈ ℤ ) → ( 𝐴 ∈ ( 1 ... 𝑊 ) ↔ 𝐴 ≤ 𝑊 ) ) |
69 |
66 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 1 ... 𝑊 ) ↔ 𝐴 ≤ 𝑊 ) ) |
70 |
65 69
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑊 ) ) |
71 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
72 |
|
ffn |
⊢ ( 𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅 → 𝐹 Fn ( 1 ... 𝑊 ) ) |
73 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑊 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
74 |
4 72 73
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
75 |
70 71 74
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
76 |
75
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
77 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝐼 ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) |
79 |
78 77
|
oveq12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) |
80 |
78
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) ) |
81 |
80
|
sneqd |
⊢ ( 𝑖 = 𝐼 → { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } = { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) |
82 |
81
|
imaeq2d |
⊢ ( 𝑖 = 𝐼 → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
83 |
79 82
|
sseq12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) ) |
84 |
83 8 9
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
85 |
10
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝐴 ) } = { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) |
86 |
85
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
87 |
84 86
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
88 |
76 87
|
unssd |
⊢ ( 𝜑 → ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
89 |
14 88
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
90 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) = ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ) |
91 |
90
|
sseq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
92 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝐷 ‘ 𝐼 ) → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) = ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ) |
93 |
92
|
sseq1d |
⊢ ( 𝑑 = ( 𝐷 ‘ 𝐼 ) → ( ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
94 |
91 93
|
rspc2ev |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐷 ‘ 𝐼 ) ∈ ℕ ∧ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
95 |
5 11 89 94
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
96 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
97 |
|
sneq |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → { 𝑐 } = { ( 𝐹 ‘ 𝐴 ) } ) |
98 |
97
|
imaeq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ◡ 𝐹 “ { 𝑐 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
99 |
98
|
sseq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
100 |
99
|
2rexbidv |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
101 |
96 100
|
spcev |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
102 |
95 101
|
syl |
⊢ ( 𝜑 → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
103 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
104 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
105 |
12 104
|
syl |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
106 |
103 105 4
|
vdwmc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
107 |
102 106
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) MonoAP 𝐹 ) |