| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdwlem1.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 2 |
|
vdwlem1.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
vdwlem1.w |
⊢ ( 𝜑 → 𝑊 ∈ ℕ ) |
| 4 |
|
vdwlem1.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅 ) |
| 5 |
|
vdwlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 6 |
|
vdwlem1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
vdwlem1.d |
⊢ ( 𝜑 → 𝐷 : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 8 |
|
vdwlem1.s |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ) |
| 9 |
|
vdwlem1.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑀 ) ) |
| 10 |
|
vdwlem1.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) ) |
| 11 |
7 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) ∈ ℕ ) |
| 12 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 13 |
|
vdwapun |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ ( 𝐷 ‘ 𝐼 ) ∈ ℕ ) → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) = ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) |
| 14 |
12 5 11 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) = ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ) |
| 15 |
5
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 17 |
6 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 18 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
| 20 |
7 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) ∈ ℕ ) |
| 21 |
5 20
|
nnaddcld |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ℕ ) |
| 22 |
21
|
nnred |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ℝ ) |
| 23 |
3
|
nnred |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 24 |
20
|
nnrpd |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) ∈ ℝ+ ) |
| 25 |
15 24
|
ltaddrpd |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
| 26 |
15 22 25
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 1 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑖 = 1 → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( 𝐴 + ( 𝐷 ‘ 1 ) ) ) |
| 29 |
28
|
eleq1d |
⊢ ( 𝑖 = 1 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ↔ ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) ) ) |
| 30 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ) |
| 31 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ dom 𝐹 |
| 32 |
31 4
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ⊆ ( 1 ... 𝑊 ) ) |
| 34 |
30 33
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 1 ... 𝑊 ) ) |
| 35 |
|
nnm1nn0 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 36 |
2 35
|
syl |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℕ0 ) |
| 37 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 38 |
36 37
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 |
|
eluzfz1 |
⊢ ( ( 𝐾 − 1 ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ) |
| 42 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑖 ) ∈ ℕ ) |
| 43 |
42
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐷 ‘ 𝑖 ) ∈ ℂ ) |
| 44 |
43
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 0 · ( 𝐷 ‘ 𝑖 ) ) = 0 ) |
| 45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + 0 ) ) |
| 46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ∈ ℕ ) |
| 47 |
46 42
|
nnaddcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℕ ) |
| 48 |
47
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℂ ) |
| 49 |
48
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + 0 ) = ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) |
| 50 |
45 49
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) = ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑚 = 0 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
| 53 |
52
|
rspceeqv |
⊢ ( ( 0 ∈ ( 0 ... ( 𝐾 − 1 ) ) ∧ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 0 · ( 𝐷 ‘ 𝑖 ) ) ) ) → ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
| 54 |
41 50 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) |
| 55 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ ) |
| 56 |
55
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ0 ) |
| 57 |
|
vdwapval |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ℕ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℕ ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) ) |
| 58 |
56 47 42 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝐾 − 1 ) ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝐷 ‘ 𝑖 ) ) ) ) ) |
| 59 |
54 58
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ) |
| 60 |
34 59
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ) |
| 61 |
60
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ∈ ( 1 ... 𝑊 ) ) |
| 62 |
29 61 19
|
rspcdva |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) ) |
| 63 |
|
elfzle2 |
⊢ ( ( 𝐴 + ( 𝐷 ‘ 1 ) ) ∈ ( 1 ... 𝑊 ) → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ≤ 𝑊 ) |
| 64 |
62 63
|
syl |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐷 ‘ 1 ) ) ≤ 𝑊 ) |
| 65 |
15 22 23 26 64
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ 𝑊 ) |
| 66 |
5 16
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
| 67 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑊 ∈ ℤ ) |
| 68 |
|
elfz5 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑊 ∈ ℤ ) → ( 𝐴 ∈ ( 1 ... 𝑊 ) ↔ 𝐴 ≤ 𝑊 ) ) |
| 69 |
66 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 1 ... 𝑊 ) ↔ 𝐴 ≤ 𝑊 ) ) |
| 70 |
65 69
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝑊 ) ) |
| 71 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 72 |
|
ffn |
⊢ ( 𝐹 : ( 1 ... 𝑊 ) ⟶ 𝑅 → 𝐹 Fn ( 1 ... 𝑊 ) ) |
| 73 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... 𝑊 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 74 |
4 72 73
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ∈ ( 1 ... 𝑊 ) ∧ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 75 |
70 71 74
|
mpbir2and |
⊢ ( 𝜑 → 𝐴 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 76 |
75
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝐼 ) ) |
| 78 |
77
|
oveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) = ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) |
| 79 |
78 77
|
oveq12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) |
| 80 |
78
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) ) |
| 81 |
80
|
sneqd |
⊢ ( 𝑖 = 𝐼 → { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } = { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) |
| 82 |
81
|
imaeq2d |
⊢ ( 𝑖 = 𝐼 → ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
| 83 |
79 82
|
sseq12d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝑖 ) ) ) } ) ↔ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) ) |
| 84 |
83 8 9
|
rspcdva |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
| 85 |
10
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝐴 ) } = { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) |
| 86 |
85
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ) } ) ) |
| 87 |
84 86
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 88 |
76 87
|
unssd |
⊢ ( 𝜑 → ( { 𝐴 } ∪ ( ( 𝐴 + ( 𝐷 ‘ 𝐼 ) ) ( AP ‘ 𝐾 ) ( 𝐷 ‘ 𝐼 ) ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 89 |
14 88
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 90 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) = ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ) |
| 91 |
90
|
sseq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
| 92 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝐷 ‘ 𝐼 ) → ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) = ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ) |
| 93 |
92
|
sseq1d |
⊢ ( 𝑑 = ( 𝐷 ‘ 𝐼 ) → ( ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ↔ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
| 94 |
91 93
|
rspc2ev |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐷 ‘ 𝐼 ) ∈ ℕ ∧ ( 𝐴 ( AP ‘ ( 𝐾 + 1 ) ) ( 𝐷 ‘ 𝐼 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 95 |
5 11 89 94
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 96 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 97 |
|
sneq |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → { 𝑐 } = { ( 𝐹 ‘ 𝐴 ) } ) |
| 98 |
97
|
imaeq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ◡ 𝐹 “ { 𝑐 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 99 |
98
|
sseq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
| 100 |
99
|
2rexbidv |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝐴 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ) ) |
| 101 |
96 100
|
spcev |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 102 |
95 101
|
syl |
⊢ ( 𝜑 → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
| 103 |
|
ovex |
⊢ ( 1 ... 𝑊 ) ∈ V |
| 104 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 105 |
12 104
|
syl |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 106 |
103 105 4
|
vdwmc |
⊢ ( 𝜑 → ( ( 𝐾 + 1 ) MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ ( 𝐾 + 1 ) ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
| 107 |
102 106
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 + 1 ) MonoAP 𝐹 ) |