Metamath Proof Explorer


Theorem hashunsng

Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion hashunsng BVAFin¬BAAB=A+1

Proof

Step Hyp Ref Expression
1 disjsn AB=¬BA
2 snfi BFin
3 hashun AFinBFinAB=AB=A+B
4 2 3 mp3an2 AFinAB=AB=A+B
5 1 4 sylan2br AFin¬BAAB=A+B
6 hashsng BVB=1
7 6 oveq2d BVA+B=A+1
8 5 7 sylan9eq AFin¬BABVAB=A+1
9 8 expcom BVAFin¬BAAB=A+1