Metamath Proof Explorer


Theorem vdwlem11

Description: Lemma for vdw . (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdw.r φRFin
vdwlem9.k φK2
vdwlem9.s φsFinnfs1nKMonoAPf
Assertion vdwlem11 φnfR1nK+1MonoAPf

Proof

Step Hyp Ref Expression
1 vdw.r φRFin
2 vdwlem9.k φK2
3 vdwlem9.s φsFinnfs1nKMonoAPf
4 hashcl RFinR0
5 1 4 syl φR0
6 nn0p1nn R0R+1
7 5 6 syl φR+1
8 1 2 3 7 vdwlem10 φnfR1nR+1KPolyAPfK+1MonoAPf
9 1 adantr φnRFin
10 ovex 1nV
11 elmapg RFin1nVfR1nf:1nR
12 9 10 11 sylancl φnfR1nf:1nR
13 12 biimpa φnfR1nf:1nR
14 5 nn0red φR
15 14 ltp1d φR<R+1
16 peano2re RR+1
17 14 16 syl φR+1
18 14 17 ltnled φR<R+1¬R+1R
19 15 18 mpbid φ¬R+1R
20 19 adantr φnf:1nR¬R+1R
21 eluz2nn K2K
22 2 21 syl φK
23 22 adantr φnf:1nRK
24 23 nnnn0d φnf:1nRK0
25 simprr φnf:1nRf:1nR
26 7 adantr φnf:1nRR+1
27 eqid 1R+1=1R+1
28 10 24 25 26 27 vdwpc φnf:1nRR+1KPolyAPfad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+di=R+1
29 1 ad3antrrr φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+diRFin
30 25 ad2antrr φnf:1nRad1R+1i1R+1f:1nR
31 25 ad3antrrr φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dif:1nR
32 simpr φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+diAPKdif-1fa+di
33 cnvimass f-1fa+didomf
34 32 33 sstrdi φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+diAPKdidomf
35 31 34 fssdmd φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+diAPKdi1n
36 22 ad3antrrr φnf:1nRad1R+1i1R+1K
37 simplrl φnf:1nRad1R+1i1R+1a
38 simprr φnf:1nRad1R+1d1R+1
39 nnex V
40 ovex 1R+1V
41 39 40 elmap d1R+1d:1R+1
42 38 41 sylib φnf:1nRad1R+1d:1R+1
43 42 ffvelcdmda φnf:1nRad1R+1i1R+1di
44 37 43 nnaddcld φnf:1nRad1R+1i1R+1a+di
45 vdwapid1 Ka+didia+dia+diAPKdi
46 36 44 43 45 syl3anc φnf:1nRad1R+1i1R+1a+dia+diAPKdi
47 46 adantr φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+dia+diAPKdi
48 35 47 sseldd φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+di1n
49 48 ex φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dia+di1n
50 ffvelcdm f:1nRa+di1nfa+diR
51 30 49 50 syl6an φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+difa+diR
52 51 ralimdva φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dii1R+1fa+diR
53 52 imp φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dii1R+1fa+diR
54 eqid i1R+1fa+di=i1R+1fa+di
55 54 fmpt i1R+1fa+diRi1R+1fa+di:1R+1R
56 53 55 sylib φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dii1R+1fa+di:1R+1R
57 56 frnd φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+diR
58 ssdomg RFinrani1R+1fa+diRrani1R+1fa+diR
59 29 57 58 sylc φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+diR
60 29 57 ssfid φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+diFin
61 hashdom rani1R+1fa+diFinRFinrani1R+1fa+diRrani1R+1fa+diR
62 60 29 61 syl2anc φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+diRrani1R+1fa+diR
63 59 62 mpbird φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+diR
64 breq1 rani1R+1fa+di=R+1rani1R+1fa+diRR+1R
65 63 64 syl5ibcom φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+di=R+1R+1R
66 65 expimpd φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+di=R+1R+1R
67 66 rexlimdvva φnf:1nRad1R+1i1R+1a+diAPKdif-1fa+dirani1R+1fa+di=R+1R+1R
68 28 67 sylbid φnf:1nRR+1KPolyAPfR+1R
69 20 68 mtod φnf:1nR¬R+1KPolyAPf
70 biorf ¬R+1KPolyAPfK+1MonoAPfR+1KPolyAPfK+1MonoAPf
71 69 70 syl φnf:1nRK+1MonoAPfR+1KPolyAPfK+1MonoAPf
72 71 anassrs φnf:1nRK+1MonoAPfR+1KPolyAPfK+1MonoAPf
73 13 72 syldan φnfR1nK+1MonoAPfR+1KPolyAPfK+1MonoAPf
74 73 ralbidva φnfR1nK+1MonoAPffR1nR+1KPolyAPfK+1MonoAPf
75 74 rexbidva φnfR1nK+1MonoAPfnfR1nR+1KPolyAPfK+1MonoAPf
76 8 75 mpbird φnfR1nK+1MonoAPf