Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
|
2 |
|
vdwlem12.f |
|
3 |
|
vdwlem12.2 |
|
4 |
|
hashcl |
|
5 |
1 4
|
syl |
|
6 |
5
|
nn0red |
|
7 |
6
|
ltp1d |
|
8 |
|
nn0p1nn |
|
9 |
5 8
|
syl |
|
10 |
9
|
nnnn0d |
|
11 |
|
hashfz1 |
|
12 |
10 11
|
syl |
|
13 |
7 12
|
breqtrrd |
|
14 |
|
fzfi |
|
15 |
|
hashsdom |
|
16 |
1 14 15
|
sylancl |
|
17 |
13 16
|
mpbid |
|
18 |
|
fveq2 |
|
19 |
|
fveq2 |
|
20 |
18 19
|
eqeqan12d |
|
21 |
|
eqeq12 |
|
22 |
20 21
|
imbi12d |
|
23 |
|
fveq2 |
|
24 |
|
fveq2 |
|
25 |
23 24
|
eqeqan12d |
|
26 |
|
eqcom |
|
27 |
25 26
|
bitrdi |
|
28 |
|
eqeq12 |
|
29 |
|
eqcom |
|
30 |
28 29
|
bitrdi |
|
31 |
27 30
|
imbi12d |
|
32 |
|
elfznn |
|
33 |
32
|
nnred |
|
34 |
33
|
ssriv |
|
35 |
34
|
a1i |
|
36 |
|
biidd |
|
37 |
|
simplr3 |
|
38 |
3
|
ad2antrr |
|
39 |
|
3simpa |
|
40 |
|
simplrl |
|
41 |
40 32
|
syl |
|
42 |
|
simprr |
|
43 |
|
simplrr |
|
44 |
|
elfznn |
|
45 |
43 44
|
syl |
|
46 |
|
nnsub |
|
47 |
41 45 46
|
syl2anc |
|
48 |
42 47
|
mpbid |
|
49 |
|
df-2 |
|
50 |
49
|
fveq2i |
|
51 |
50
|
oveqi |
|
52 |
|
1nn0 |
|
53 |
|
vdwapun |
|
54 |
52 41 48 53
|
mp3an2i |
|
55 |
51 54
|
eqtrid |
|
56 |
|
simprl |
|
57 |
2
|
ad2antrr |
|
58 |
57
|
ffnd |
|
59 |
|
fniniseg |
|
60 |
58 59
|
syl |
|
61 |
40 56 60
|
mpbir2and |
|
62 |
61
|
snssd |
|
63 |
41
|
nncnd |
|
64 |
45
|
nncnd |
|
65 |
63 64
|
pncan3d |
|
66 |
65
|
oveq1d |
|
67 |
|
vdwap1 |
|
68 |
45 48 67
|
syl2anc |
|
69 |
66 68
|
eqtrd |
|
70 |
|
eqidd |
|
71 |
|
fniniseg |
|
72 |
58 71
|
syl |
|
73 |
43 70 72
|
mpbir2and |
|
74 |
73
|
snssd |
|
75 |
69 74
|
eqsstrd |
|
76 |
62 75
|
unssd |
|
77 |
55 76
|
eqsstrd |
|
78 |
|
oveq1 |
|
79 |
78
|
sseq1d |
|
80 |
|
oveq2 |
|
81 |
80
|
sseq1d |
|
82 |
79 81
|
rspc2ev |
|
83 |
41 48 77 82
|
syl3anc |
|
84 |
|
fvex |
|
85 |
|
sneq |
|
86 |
85
|
imaeq2d |
|
87 |
86
|
sseq2d |
|
88 |
87
|
2rexbidv |
|
89 |
84 88
|
spcev |
|
90 |
83 89
|
syl |
|
91 |
|
ovex |
|
92 |
|
2nn0 |
|
93 |
92
|
a1i |
|
94 |
91 93 57
|
vdwmc |
|
95 |
90 94
|
mpbird |
|
96 |
39 95
|
sylanl2 |
|
97 |
96
|
expr |
|
98 |
38 97
|
mtod |
|
99 |
|
simplr1 |
|
100 |
99 33
|
syl |
|
101 |
|
simplr2 |
|
102 |
34 101
|
sselid |
|
103 |
100 102
|
eqleltd |
|
104 |
37 98 103
|
mpbir2and |
|
105 |
104
|
ex |
|
106 |
22 31 35 36 105
|
wlogle |
|
107 |
106
|
ralrimivva |
|
108 |
|
dff13 |
|
109 |
2 107 108
|
sylanbrc |
|
110 |
|
f1domg |
|
111 |
1 109 110
|
sylc |
|
112 |
|
domnsym |
|
113 |
111 112
|
syl |
|
114 |
17 113
|
pm2.65i |
|