Metamath Proof Explorer


Theorem f1domg

Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004)

Ref Expression
Assertion f1domg B C F : A 1-1 B A B

Proof

Step Hyp Ref Expression
1 f1f F : A 1-1 B F : A B
2 f1dmex F : A 1-1 B B C A V
3 fex F : A B A V F V
4 1 2 3 syl2an2r F : A 1-1 B B C F V
5 4 expcom B C F : A 1-1 B F V
6 f1eq1 f = F f : A 1-1 B F : A 1-1 B
7 6 spcegv F V F : A 1-1 B f f : A 1-1 B
8 5 7 syli B C F : A 1-1 B f f : A 1-1 B
9 brdomg B C A B f f : A 1-1 B
10 8 9 sylibrd B C F : A 1-1 B A B