| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r | ⊢ ( 𝜑  →  𝑅  ∈  Fin ) | 
						
							| 2 |  | vdwlem12.f | ⊢ ( 𝜑  →  𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ 𝑅 ) | 
						
							| 3 |  | vdwlem12.2 | ⊢ ( 𝜑  →  ¬  2  MonoAP  𝐹 ) | 
						
							| 4 |  | hashcl | ⊢ ( 𝑅  ∈  Fin  →  ( ♯ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  ∈  ℝ ) | 
						
							| 7 | 6 | ltp1d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  <  ( ( ♯ ‘ 𝑅 )  +  1 ) ) | 
						
							| 8 |  | nn0p1nn | ⊢ ( ( ♯ ‘ 𝑅 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ ) | 
						
							| 9 | 5 8 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ ) | 
						
							| 10 | 9 | nnnn0d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ0 ) | 
						
							| 11 |  | hashfz1 | ⊢ ( ( ( ♯ ‘ 𝑅 )  +  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  =  ( ( ♯ ‘ 𝑅 )  +  1 ) ) | 
						
							| 13 | 7 12 | breqtrrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  <  ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 14 |  | fzfi | ⊢ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∈  Fin | 
						
							| 15 |  | hashsdom | ⊢ ( ( 𝑅  ∈  Fin  ∧  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝑅 )  <  ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ↔  𝑅  ≺  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 16 | 1 14 15 | sylancl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  <  ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) )  ↔  𝑅  ≺  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 17 | 13 16 | mpbid | ⊢ ( 𝜑  →  𝑅  ≺  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 20 | 18 19 | eqeqan12d | ⊢ ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 21 |  | eqeq12 | ⊢ ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  →  ( 𝑧  =  𝑤  ↔  𝑥  =  𝑦 ) ) | 
						
							| 22 | 20 21 | imbi12d | ⊢ ( ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 )  →  ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 25 | 23 24 | eqeqan12d | ⊢ ( ( 𝑧  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 |  | eqcom | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 27 | 25 26 | bitrdi | ⊢ ( ( 𝑧  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  ↔  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 28 |  | eqeq12 | ⊢ ( ( 𝑧  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( 𝑧  =  𝑤  ↔  𝑦  =  𝑥 ) ) | 
						
							| 29 |  | eqcom | ⊢ ( 𝑦  =  𝑥  ↔  𝑥  =  𝑦 ) | 
						
							| 30 | 28 29 | bitrdi | ⊢ ( ( 𝑧  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( 𝑧  =  𝑤  ↔  𝑥  =  𝑦 ) ) | 
						
							| 31 | 27 30 | imbi12d | ⊢ ( ( 𝑧  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 32 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  𝑥  ∈  ℕ ) | 
						
							| 33 | 32 | nnred | ⊢ ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 34 | 33 | ssriv | ⊢ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ⊆  ℝ | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ⊆  ℝ ) | 
						
							| 36 |  | biidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 37 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ≤  𝑦 ) | 
						
							| 38 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ¬  2  MonoAP  𝐹 ) | 
						
							| 39 |  | 3simpa | ⊢ ( ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 )  →  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) ) | 
						
							| 40 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 41 | 40 32 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℕ ) | 
						
							| 42 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  <  𝑦 ) | 
						
							| 43 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 44 |  | elfznn | ⊢ ( 𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ℕ ) | 
						
							| 46 |  | nnsub | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  <  𝑦  ↔  ( 𝑦  −  𝑥 )  ∈  ℕ ) ) | 
						
							| 47 | 41 45 46 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥  <  𝑦  ↔  ( 𝑦  −  𝑥 )  ∈  ℕ ) ) | 
						
							| 48 | 42 47 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑦  −  𝑥 )  ∈  ℕ ) | 
						
							| 49 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 50 | 49 | fveq2i | ⊢ ( AP ‘ 2 )  =  ( AP ‘ ( 1  +  1 ) ) | 
						
							| 51 | 50 | oveqi | ⊢ ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) )  =  ( 𝑥 ( AP ‘ ( 1  +  1 ) ) ( 𝑦  −  𝑥 ) ) | 
						
							| 52 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 53 |  | vdwapun | ⊢ ( ( 1  ∈  ℕ0  ∧  𝑥  ∈  ℕ  ∧  ( 𝑦  −  𝑥 )  ∈  ℕ )  →  ( 𝑥 ( AP ‘ ( 1  +  1 ) ) ( 𝑦  −  𝑥 ) )  =  ( { 𝑥 }  ∪  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 54 | 52 41 48 53 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥 ( AP ‘ ( 1  +  1 ) ) ( 𝑦  −  𝑥 ) )  =  ( { 𝑥 }  ∪  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 55 | 51 54 | eqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) )  =  ( { 𝑥 }  ∪  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 56 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 57 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ 𝑅 ) | 
						
							| 58 | 57 | ffnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝐹  Fn  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 59 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 61 | 40 56 60 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 62 | 61 | snssd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  { 𝑥 }  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 63 | 41 | nncnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 64 | 45 | nncnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 65 | 63 64 | pncan3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥  +  ( 𝑦  −  𝑥 ) )  =  𝑦 ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) )  =  ( 𝑦 ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) ) ) | 
						
							| 67 |  | vdwap1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( 𝑦  −  𝑥 )  ∈  ℕ )  →  ( 𝑦 ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) )  =  { 𝑦 } ) | 
						
							| 68 | 45 48 67 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑦 ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) )  =  { 𝑦 } ) | 
						
							| 69 | 66 68 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) )  =  { 𝑦 } ) | 
						
							| 70 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 71 |  | fniniseg | ⊢ ( 𝐹  Fn  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 72 | 58 71 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 73 | 43 70 72 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  𝑦  ∈  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 74 | 73 | snssd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  { 𝑦 }  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 75 | 69 74 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 76 | 62 75 | unssd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( { 𝑥 }  ∪  ( ( 𝑥  +  ( 𝑦  −  𝑥 ) ) ( AP ‘ 1 ) ( 𝑦  −  𝑥 ) ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 77 | 55 76 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 78 |  | oveq1 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎 ( AP ‘ 2 ) 𝑑 )  =  ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ) | 
						
							| 79 | 78 | sseq1d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑥 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) ) | 
						
							| 80 |  | oveq2 | ⊢ ( 𝑑  =  ( 𝑦  −  𝑥 )  →  ( 𝑥 ( AP ‘ 2 ) 𝑑 )  =  ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) ) ) | 
						
							| 81 | 80 | sseq1d | ⊢ ( 𝑑  =  ( 𝑦  −  𝑥 )  →  ( ( 𝑥 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  ↔  ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) ) | 
						
							| 82 | 79 81 | rspc2ev | ⊢ ( ( 𝑥  ∈  ℕ  ∧  ( 𝑦  −  𝑥 )  ∈  ℕ  ∧  ( 𝑥 ( AP ‘ 2 ) ( 𝑦  −  𝑥 ) )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 83 | 41 48 77 82 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 84 |  | fvex | ⊢ ( 𝐹 ‘ 𝑦 )  ∈  V | 
						
							| 85 |  | sneq | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑦 )  →  { 𝑐 }  =  { ( 𝐹 ‘ 𝑦 ) } ) | 
						
							| 86 | 85 | imaeq2d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑦 )  →  ( ◡ 𝐹  “  { 𝑐 } )  =  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) | 
						
							| 87 | 86 | sseq2d | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑦 )  →  ( ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) ) | 
						
							| 88 | 87 | 2rexbidv | ⊢ ( 𝑐  =  ( 𝐹 ‘ 𝑦 )  →  ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } )  ↔  ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } ) ) ) | 
						
							| 89 | 84 88 | spcev | ⊢ ( ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { ( 𝐹 ‘ 𝑦 ) } )  →  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 90 | 83 89 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) | 
						
							| 91 |  | ovex | ⊢ ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∈  V | 
						
							| 92 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 93 | 92 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  ∈  ℕ0 ) | 
						
							| 94 | 91 93 57 | vdwmc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( 2  MonoAP  𝐹  ↔  ∃ 𝑐 ∃ 𝑎  ∈  ℕ ∃ 𝑑  ∈  ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 )  ⊆  ( ◡ 𝐹  “  { 𝑐 } ) ) ) | 
						
							| 95 | 90 94 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  MonoAP  𝐹 ) | 
						
							| 96 | 39 95 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ∧  𝑥  <  𝑦 ) )  →  2  MonoAP  𝐹 ) | 
						
							| 97 | 96 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑥  <  𝑦  →  2  MonoAP  𝐹 ) ) | 
						
							| 98 | 38 97 | mtod | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ¬  𝑥  <  𝑦 ) | 
						
							| 99 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 100 | 99 33 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 101 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 102 | 34 101 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 103 | 100 102 | eqleltd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝑥  =  𝑦  ↔  ( 𝑥  ≤  𝑦  ∧  ¬  𝑥  <  𝑦 ) ) ) | 
						
							| 104 | 37 98 103 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) )  →  𝑥  =  𝑦 ) | 
						
							| 105 | 104 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑥  ≤  𝑦 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 106 | 22 31 35 36 105 | wlogle | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ∧  𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 107 | 106 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ∀ 𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 108 |  | dff13 | ⊢ ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) –1-1→ 𝑅  ↔  ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ⟶ 𝑅  ∧  ∀ 𝑥  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ∀ 𝑦  ∈  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 109 | 2 107 108 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) –1-1→ 𝑅 ) | 
						
							| 110 |  | f1domg | ⊢ ( 𝑅  ∈  Fin  →  ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) –1-1→ 𝑅  →  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ≼  𝑅 ) ) | 
						
							| 111 | 1 109 110 | sylc | ⊢ ( 𝜑  →  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ≼  𝑅 ) | 
						
							| 112 |  | domnsym | ⊢ ( ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) )  ≼  𝑅  →  ¬  𝑅  ≺  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 113 | 111 112 | syl | ⊢ ( 𝜑  →  ¬  𝑅  ≺  ( 1 ... ( ( ♯ ‘ 𝑅 )  +  1 ) ) ) | 
						
							| 114 | 17 113 | pm2.65i | ⊢ ¬  𝜑 |