Metamath Proof Explorer


Theorem vdwlem12

Description: Lemma for vdw . K = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Hypotheses vdw.r ( 𝜑𝑅 ∈ Fin )
vdwlem12.f ( 𝜑𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 )
vdwlem12.2 ( 𝜑 → ¬ 2 MonoAP 𝐹 )
Assertion vdwlem12 ¬ 𝜑

Proof

Step Hyp Ref Expression
1 vdw.r ( 𝜑𝑅 ∈ Fin )
2 vdwlem12.f ( 𝜑𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 )
3 vdwlem12.2 ( 𝜑 → ¬ 2 MonoAP 𝐹 )
4 hashcl ( 𝑅 ∈ Fin → ( ♯ ‘ 𝑅 ) ∈ ℕ0 )
5 1 4 syl ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 )
6 5 nn0red ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℝ )
7 6 ltp1d ( 𝜑 → ( ♯ ‘ 𝑅 ) < ( ( ♯ ‘ 𝑅 ) + 1 ) )
8 nn0p1nn ( ( ♯ ‘ 𝑅 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ )
9 5 8 syl ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ )
10 9 nnnn0d ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ0 )
11 hashfz1 ( ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) )
12 10 11 syl ( 𝜑 → ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) )
13 7 12 breqtrrd ( 𝜑 → ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) )
14 fzfi ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ Fin
15 hashsdom ( ( 𝑅 ∈ Fin ∧ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ↔ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) )
16 1 14 15 sylancl ( 𝜑 → ( ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ↔ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) )
17 13 16 mpbid ( 𝜑𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
18 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
19 fveq2 ( 𝑤 = 𝑦 → ( 𝐹𝑤 ) = ( 𝐹𝑦 ) )
20 18 19 eqeqan12d ( ( 𝑧 = 𝑥𝑤 = 𝑦 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
21 eqeq12 ( ( 𝑧 = 𝑥𝑤 = 𝑦 ) → ( 𝑧 = 𝑤𝑥 = 𝑦 ) )
22 20 21 imbi12d ( ( 𝑧 = 𝑥𝑤 = 𝑦 ) → ( ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
23 fveq2 ( 𝑧 = 𝑦 → ( 𝐹𝑧 ) = ( 𝐹𝑦 ) )
24 fveq2 ( 𝑤 = 𝑥 → ( 𝐹𝑤 ) = ( 𝐹𝑥 ) )
25 23 24 eqeqan12d ( ( 𝑧 = 𝑦𝑤 = 𝑥 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ) )
26 eqcom ( ( 𝐹𝑦 ) = ( 𝐹𝑥 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
27 25 26 bitrdi ( ( 𝑧 = 𝑦𝑤 = 𝑥 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
28 eqeq12 ( ( 𝑧 = 𝑦𝑤 = 𝑥 ) → ( 𝑧 = 𝑤𝑦 = 𝑥 ) )
29 eqcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
30 28 29 bitrdi ( ( 𝑧 = 𝑦𝑤 = 𝑥 ) → ( 𝑧 = 𝑤𝑥 = 𝑦 ) )
31 27 30 imbi12d ( ( 𝑧 = 𝑦𝑤 = 𝑥 ) → ( ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
32 elfznn ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑥 ∈ ℕ )
33 32 nnred ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑥 ∈ ℝ )
34 33 ssriv ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⊆ ℝ
35 34 a1i ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⊆ ℝ )
36 biidd ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) → ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
37 simplr3 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑥𝑦 )
38 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → ¬ 2 MonoAP 𝐹 )
39 3simpa ( ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) → ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) )
40 simplrl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
41 40 32 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℕ )
42 simprr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 < 𝑦 )
43 simplrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
44 elfznn ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑦 ∈ ℕ )
45 43 44 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℕ )
46 nnsub ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 ↔ ( 𝑦𝑥 ) ∈ ℕ ) )
47 41 45 46 syl2anc ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝑦𝑥 ) ∈ ℕ ) )
48 42 47 mpbid ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦𝑥 ) ∈ ℕ )
49 df-2 2 = ( 1 + 1 )
50 49 fveq2i ( AP ‘ 2 ) = ( AP ‘ ( 1 + 1 ) )
51 50 oveqi ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) = ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦𝑥 ) )
52 1nn0 1 ∈ ℕ0
53 vdwapun ( ( 1 ∈ ℕ0𝑥 ∈ ℕ ∧ ( 𝑦𝑥 ) ∈ ℕ ) → ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) ) )
54 52 41 48 53 mp3an2i ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) ) )
55 51 54 syl5eq ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) ) )
56 simprl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
57 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 )
58 57 ffnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
59 fniniseg ( 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( 𝑥 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) )
60 58 59 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) )
61 40 56 60 mpbir2and ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
62 61 snssd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → { 𝑥 } ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
63 41 nncnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℂ )
64 45 nncnd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℂ )
65 63 64 pncan3d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 + ( 𝑦𝑥 ) ) = 𝑦 )
66 65 oveq1d ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) = ( 𝑦 ( AP ‘ 1 ) ( 𝑦𝑥 ) ) )
67 vdwap1 ( ( 𝑦 ∈ ℕ ∧ ( 𝑦𝑥 ) ∈ ℕ ) → ( 𝑦 ( AP ‘ 1 ) ( 𝑦𝑥 ) ) = { 𝑦 } )
68 45 48 67 syl2anc ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦 ( AP ‘ 1 ) ( 𝑦𝑥 ) ) = { 𝑦 } )
69 66 68 eqtrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) = { 𝑦 } )
70 eqidd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝐹𝑦 ) = ( 𝐹𝑦 ) )
71 fniniseg ( 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( 𝑦 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹𝑦 ) = ( 𝐹𝑦 ) ) ) )
72 58 71 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹𝑦 ) = ( 𝐹𝑦 ) ) ) )
73 43 70 72 mpbir2and ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
74 73 snssd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → { 𝑦 } ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
75 69 74 eqsstrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
76 62 75 unssd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦𝑥 ) ) ( AP ‘ 1 ) ( 𝑦𝑥 ) ) ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
77 55 76 eqsstrd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
78 oveq1 ( 𝑎 = 𝑥 → ( 𝑎 ( AP ‘ 2 ) 𝑑 ) = ( 𝑥 ( AP ‘ 2 ) 𝑑 ) )
79 78 sseq1d ( 𝑎 = 𝑥 → ( ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ) )
80 oveq2 ( 𝑑 = ( 𝑦𝑥 ) → ( 𝑥 ( AP ‘ 2 ) 𝑑 ) = ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) )
81 80 sseq1d ( 𝑑 = ( 𝑦𝑥 ) → ( ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ↔ ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ) )
82 79 81 rspc2ev ( ( 𝑥 ∈ ℕ ∧ ( 𝑦𝑥 ) ∈ ℕ ∧ ( 𝑥 ( AP ‘ 2 ) ( 𝑦𝑥 ) ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
83 41 48 77 82 syl3anc ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
84 fvex ( 𝐹𝑦 ) ∈ V
85 sneq ( 𝑐 = ( 𝐹𝑦 ) → { 𝑐 } = { ( 𝐹𝑦 ) } )
86 85 imaeq2d ( 𝑐 = ( 𝐹𝑦 ) → ( 𝐹 “ { 𝑐 } ) = ( 𝐹 “ { ( 𝐹𝑦 ) } ) )
87 86 sseq2d ( 𝑐 = ( 𝐹𝑦 ) → ( ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ) )
88 87 2rexbidv ( 𝑐 = ( 𝐹𝑦 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) ) )
89 84 88 spcev ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { ( 𝐹𝑦 ) } ) → ∃ 𝑐𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) )
90 83 89 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑐𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) )
91 ovex ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ V
92 2nn0 2 ∈ ℕ0
93 92 a1i ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 ∈ ℕ0 )
94 91 93 57 vdwmc ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 2 MonoAP 𝐹 ↔ ∃ 𝑐𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( 𝐹 “ { 𝑐 } ) ) )
95 90 94 mpbird ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 MonoAP 𝐹 )
96 39 95 sylanl2 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 MonoAP 𝐹 )
97 96 expr ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → ( 𝑥 < 𝑦 → 2 MonoAP 𝐹 ) )
98 38 97 mtod ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → ¬ 𝑥 < 𝑦 )
99 simplr1 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
100 99 33 syl ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑥 ∈ ℝ )
101 simplr2 ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
102 34 101 sseldi ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑦 ∈ ℝ )
103 100 102 eqleltd ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑥𝑦 ∧ ¬ 𝑥 < 𝑦 ) ) )
104 37 98 103 mpbir2and ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) ∧ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → 𝑥 = 𝑦 )
105 104 ex ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥𝑦 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
106 22 31 35 36 105 wlogle ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
107 106 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∀ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
108 dff13 ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1𝑅 ↔ ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ∧ ∀ 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∀ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
109 2 107 108 sylanbrc ( 𝜑𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1𝑅 )
110 f1domg ( 𝑅 ∈ Fin → ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1𝑅 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 ) )
111 1 109 110 sylc ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 )
112 domnsym ( ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 → ¬ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
113 111 112 syl ( 𝜑 → ¬ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) )
114 17 113 pm2.65i ¬ 𝜑