Step |
Hyp |
Ref |
Expression |
1 |
|
vdw.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
2 |
|
vdwlem12.f |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ) |
3 |
|
vdwlem12.2 |
⊢ ( 𝜑 → ¬ 2 MonoAP 𝐹 ) |
4 |
|
hashcl |
⊢ ( 𝑅 ∈ Fin → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
6 |
5
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℝ ) |
7 |
6
|
ltp1d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) < ( ( ♯ ‘ 𝑅 ) + 1 ) ) |
8 |
|
nn0p1nn |
⊢ ( ( ♯ ‘ 𝑅 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ ) |
10 |
9
|
nnnn0d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ0 ) |
11 |
|
hashfz1 |
⊢ ( ( ( ♯ ‘ 𝑅 ) + 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) = ( ( ♯ ‘ 𝑅 ) + 1 ) ) |
13 |
7 12
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
14 |
|
fzfi |
⊢ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ Fin |
15 |
|
hashsdom |
⊢ ( ( 𝑅 ∈ Fin ∧ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ↔ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
16 |
1 14 15
|
sylancl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) < ( ♯ ‘ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ↔ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
17 |
13 16
|
mpbid |
⊢ ( 𝜑 → 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑦 ) ) |
20 |
18 19
|
eqeqan12d |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
eqeq12 |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( 𝑧 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
22 |
20 21
|
imbi12d |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
25 |
23 24
|
eqeqan12d |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
27 |
25 26
|
bitrdi |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
28 |
|
eqeq12 |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝑧 = 𝑤 ↔ 𝑦 = 𝑥 ) ) |
29 |
|
eqcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
30 |
28 29
|
bitrdi |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝑧 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
31 |
27 30
|
imbi12d |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
32 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑥 ∈ ℕ ) |
33 |
32
|
nnred |
⊢ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑥 ∈ ℝ ) |
34 |
33
|
ssriv |
⊢ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⊆ ℝ |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⊆ ℝ ) |
36 |
|
biidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
37 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ≤ 𝑦 ) |
38 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ¬ 2 MonoAP 𝐹 ) |
39 |
|
3simpa |
⊢ ( ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) |
40 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
41 |
40 32
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℕ ) |
42 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 < 𝑦 ) |
43 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
44 |
|
elfznn |
⊢ ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → 𝑦 ∈ ℕ ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℕ ) |
46 |
|
nnsub |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
47 |
41 45 46
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
48 |
42 47
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦 − 𝑥 ) ∈ ℕ ) |
49 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
50 |
49
|
fveq2i |
⊢ ( AP ‘ 2 ) = ( AP ‘ ( 1 + 1 ) ) |
51 |
50
|
oveqi |
⊢ ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) = ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦 − 𝑥 ) ) |
52 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
53 |
|
vdwapun |
⊢ ( ( 1 ∈ ℕ0 ∧ 𝑥 ∈ ℕ ∧ ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦 − 𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ) ) |
54 |
52 41 48 53
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ ( 1 + 1 ) ) ( 𝑦 − 𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ) ) |
55 |
51 54
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) = ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ) ) |
56 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
57 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ) |
58 |
57
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
59 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
61 |
40 56 60
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
62 |
61
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → { 𝑥 } ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
63 |
41
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℂ ) |
64 |
45
|
nncnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℂ ) |
65 |
63 64
|
pncan3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 + ( 𝑦 − 𝑥 ) ) = 𝑦 ) |
66 |
65
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) = ( 𝑦 ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ) |
67 |
|
vdwap1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑦 ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) = { 𝑦 } ) |
68 |
45 48 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦 ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) = { 𝑦 } ) |
69 |
66 68
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) = { 𝑦 } ) |
70 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
71 |
|
fniniseg |
⊢ ( 𝐹 Fn ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
72 |
58 71
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
73 |
43 70 72
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
74 |
73
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → { 𝑦 } ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
75 |
69 74
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
76 |
62 75
|
unssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( { 𝑥 } ∪ ( ( 𝑥 + ( 𝑦 − 𝑥 ) ) ( AP ‘ 1 ) ( 𝑦 − 𝑥 ) ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
77 |
55 76
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
78 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ( AP ‘ 2 ) 𝑑 ) = ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ) |
79 |
78
|
sseq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
80 |
|
oveq2 |
⊢ ( 𝑑 = ( 𝑦 − 𝑥 ) → ( 𝑥 ( AP ‘ 2 ) 𝑑 ) = ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) ) |
81 |
80
|
sseq1d |
⊢ ( 𝑑 = ( 𝑦 − 𝑥 ) → ( ( 𝑥 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ↔ ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
82 |
79 81
|
rspc2ev |
⊢ ( ( 𝑥 ∈ ℕ ∧ ( 𝑦 − 𝑥 ) ∈ ℕ ∧ ( 𝑥 ( AP ‘ 2 ) ( 𝑦 − 𝑥 ) ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
83 |
41 48 77 82
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
84 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
85 |
|
sneq |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑦 ) → { 𝑐 } = { ( 𝐹 ‘ 𝑦 ) } ) |
86 |
85
|
imaeq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑦 ) → ( ◡ 𝐹 “ { 𝑐 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) |
87 |
86
|
sseq2d |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
88 |
87
|
2rexbidv |
⊢ ( 𝑐 = ( 𝐹 ‘ 𝑦 ) → ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ↔ ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) ) ) |
89 |
84 88
|
spcev |
⊢ ( ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑦 ) } ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
90 |
83 89
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) |
91 |
|
ovex |
⊢ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∈ V |
92 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
93 |
92
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 ∈ ℕ0 ) |
94 |
91 93 57
|
vdwmc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 2 MonoAP 𝐹 ↔ ∃ 𝑐 ∃ 𝑎 ∈ ℕ ∃ 𝑑 ∈ ℕ ( 𝑎 ( AP ‘ 2 ) 𝑑 ) ⊆ ( ◡ 𝐹 “ { 𝑐 } ) ) ) |
95 |
90 94
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 MonoAP 𝐹 ) |
96 |
39 95
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 MonoAP 𝐹 ) |
97 |
96
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 < 𝑦 → 2 MonoAP 𝐹 ) ) |
98 |
38 97
|
mtod |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ¬ 𝑥 < 𝑦 ) |
99 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
100 |
99 33
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
101 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
102 |
34 101
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
103 |
100 102
|
eqleltd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ ¬ 𝑥 < 𝑦 ) ) ) |
104 |
37 98 103
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
105 |
104
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑥 ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
106 |
22 31 35 36 105
|
wlogle |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∧ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
107 |
106
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∀ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
108 |
|
dff13 |
⊢ ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1→ 𝑅 ↔ ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ⟶ 𝑅 ∧ ∀ 𝑥 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ∀ 𝑦 ∈ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
109 |
2 107 108
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1→ 𝑅 ) |
110 |
|
f1domg |
⊢ ( 𝑅 ∈ Fin → ( 𝐹 : ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) –1-1→ 𝑅 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 ) ) |
111 |
1 109 110
|
sylc |
⊢ ( 𝜑 → ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 ) |
112 |
|
domnsym |
⊢ ( ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ≼ 𝑅 → ¬ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
113 |
111 112
|
syl |
⊢ ( 𝜑 → ¬ 𝑅 ≺ ( 1 ... ( ( ♯ ‘ 𝑅 ) + 1 ) ) ) |
114 |
17 113
|
pm2.65i |
⊢ ¬ 𝜑 |