| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdw.r |  |-  ( ph -> R e. Fin ) | 
						
							| 2 |  | vdwlem12.f |  |-  ( ph -> F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R ) | 
						
							| 3 |  | vdwlem12.2 |  |-  ( ph -> -. 2 MonoAP F ) | 
						
							| 4 |  | hashcl |  |-  ( R e. Fin -> ( # ` R ) e. NN0 ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> ( # ` R ) e. NN0 ) | 
						
							| 6 | 5 | nn0red |  |-  ( ph -> ( # ` R ) e. RR ) | 
						
							| 7 | 6 | ltp1d |  |-  ( ph -> ( # ` R ) < ( ( # ` R ) + 1 ) ) | 
						
							| 8 |  | nn0p1nn |  |-  ( ( # ` R ) e. NN0 -> ( ( # ` R ) + 1 ) e. NN ) | 
						
							| 9 | 5 8 | syl |  |-  ( ph -> ( ( # ` R ) + 1 ) e. NN ) | 
						
							| 10 | 9 | nnnn0d |  |-  ( ph -> ( ( # ` R ) + 1 ) e. NN0 ) | 
						
							| 11 |  | hashfz1 |  |-  ( ( ( # ` R ) + 1 ) e. NN0 -> ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) = ( ( # ` R ) + 1 ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) = ( ( # ` R ) + 1 ) ) | 
						
							| 13 | 7 12 | breqtrrd |  |-  ( ph -> ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) ) | 
						
							| 14 |  | fzfi |  |-  ( 1 ... ( ( # ` R ) + 1 ) ) e. Fin | 
						
							| 15 |  | hashsdom |  |-  ( ( R e. Fin /\ ( 1 ... ( ( # ` R ) + 1 ) ) e. Fin ) -> ( ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) <-> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) ) | 
						
							| 16 | 1 14 15 | sylancl |  |-  ( ph -> ( ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) <-> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) ) | 
						
							| 17 | 13 16 | mpbid |  |-  ( ph -> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( z = x -> ( F ` z ) = ( F ` x ) ) | 
						
							| 19 |  | fveq2 |  |-  ( w = y -> ( F ` w ) = ( F ` y ) ) | 
						
							| 20 | 18 19 | eqeqan12d |  |-  ( ( z = x /\ w = y ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` x ) = ( F ` y ) ) ) | 
						
							| 21 |  | eqeq12 |  |-  ( ( z = x /\ w = y ) -> ( z = w <-> x = y ) ) | 
						
							| 22 | 20 21 | imbi12d |  |-  ( ( z = x /\ w = y ) -> ( ( ( F ` z ) = ( F ` w ) -> z = w ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( z = y -> ( F ` z ) = ( F ` y ) ) | 
						
							| 24 |  | fveq2 |  |-  ( w = x -> ( F ` w ) = ( F ` x ) ) | 
						
							| 25 | 23 24 | eqeqan12d |  |-  ( ( z = y /\ w = x ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` y ) = ( F ` x ) ) ) | 
						
							| 26 |  | eqcom |  |-  ( ( F ` y ) = ( F ` x ) <-> ( F ` x ) = ( F ` y ) ) | 
						
							| 27 | 25 26 | bitrdi |  |-  ( ( z = y /\ w = x ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` x ) = ( F ` y ) ) ) | 
						
							| 28 |  | eqeq12 |  |-  ( ( z = y /\ w = x ) -> ( z = w <-> y = x ) ) | 
						
							| 29 |  | eqcom |  |-  ( y = x <-> x = y ) | 
						
							| 30 | 28 29 | bitrdi |  |-  ( ( z = y /\ w = x ) -> ( z = w <-> x = y ) ) | 
						
							| 31 | 27 30 | imbi12d |  |-  ( ( z = y /\ w = x ) -> ( ( ( F ` z ) = ( F ` w ) -> z = w ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 32 |  | elfznn |  |-  ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) -> x e. NN ) | 
						
							| 33 | 32 | nnred |  |-  ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) -> x e. RR ) | 
						
							| 34 | 33 | ssriv |  |-  ( 1 ... ( ( # ` R ) + 1 ) ) C_ RR | 
						
							| 35 | 34 | a1i |  |-  ( ph -> ( 1 ... ( ( # ` R ) + 1 ) ) C_ RR ) | 
						
							| 36 |  | biidd |  |-  ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) -> ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 37 |  | simplr3 |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x <_ y ) | 
						
							| 38 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> -. 2 MonoAP F ) | 
						
							| 39 |  | 3simpa |  |-  ( ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) -> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) | 
						
							| 40 |  | simplrl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 41 | 40 32 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. NN ) | 
						
							| 42 |  | simprr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x < y ) | 
						
							| 43 |  | simplrr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 44 |  | elfznn |  |-  ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) -> y e. NN ) | 
						
							| 45 | 43 44 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. NN ) | 
						
							| 46 |  | nnsub |  |-  ( ( x e. NN /\ y e. NN ) -> ( x < y <-> ( y - x ) e. NN ) ) | 
						
							| 47 | 41 45 46 | syl2anc |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x < y <-> ( y - x ) e. NN ) ) | 
						
							| 48 | 42 47 | mpbid |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y - x ) e. NN ) | 
						
							| 49 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 50 | 49 | fveq2i |  |-  ( AP ` 2 ) = ( AP ` ( 1 + 1 ) ) | 
						
							| 51 | 50 | oveqi |  |-  ( x ( AP ` 2 ) ( y - x ) ) = ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) | 
						
							| 52 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 53 |  | vdwapun |  |-  ( ( 1 e. NN0 /\ x e. NN /\ ( y - x ) e. NN ) -> ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) | 
						
							| 54 | 52 41 48 53 | mp3an2i |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) | 
						
							| 55 | 51 54 | eqtrid |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` 2 ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) | 
						
							| 56 |  | simprl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( F ` x ) = ( F ` y ) ) | 
						
							| 57 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R ) | 
						
							| 58 | 57 | ffnd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> F Fn ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 59 |  | fniniseg |  |-  ( F Fn ( 1 ... ( ( # ` R ) + 1 ) ) -> ( x e. ( `' F " { ( F ` y ) } ) <-> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x e. ( `' F " { ( F ` y ) } ) <-> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` x ) = ( F ` y ) ) ) ) | 
						
							| 61 | 40 56 60 | mpbir2and |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. ( `' F " { ( F ` y ) } ) ) | 
						
							| 62 | 61 | snssd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> { x } C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 63 | 41 | nncnd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. CC ) | 
						
							| 64 | 45 | nncnd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. CC ) | 
						
							| 65 | 63 64 | pncan3d |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x + ( y - x ) ) = y ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) = ( y ( AP ` 1 ) ( y - x ) ) ) | 
						
							| 67 |  | vdwap1 |  |-  ( ( y e. NN /\ ( y - x ) e. NN ) -> ( y ( AP ` 1 ) ( y - x ) ) = { y } ) | 
						
							| 68 | 45 48 67 | syl2anc |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y ( AP ` 1 ) ( y - x ) ) = { y } ) | 
						
							| 69 | 66 68 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) = { y } ) | 
						
							| 70 |  | eqidd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( F ` y ) = ( F ` y ) ) | 
						
							| 71 |  | fniniseg |  |-  ( F Fn ( 1 ... ( ( # ` R ) + 1 ) ) -> ( y e. ( `' F " { ( F ` y ) } ) <-> ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` y ) = ( F ` y ) ) ) ) | 
						
							| 72 | 58 71 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y e. ( `' F " { ( F ` y ) } ) <-> ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` y ) = ( F ` y ) ) ) ) | 
						
							| 73 | 43 70 72 | mpbir2and |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. ( `' F " { ( F ` y ) } ) ) | 
						
							| 74 | 73 | snssd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> { y } C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 75 | 69 74 | eqsstrd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 76 | 62 75 | unssd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 77 | 55 76 | eqsstrd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 78 |  | oveq1 |  |-  ( a = x -> ( a ( AP ` 2 ) d ) = ( x ( AP ` 2 ) d ) ) | 
						
							| 79 | 78 | sseq1d |  |-  ( a = x -> ( ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) <-> ( x ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 80 |  | oveq2 |  |-  ( d = ( y - x ) -> ( x ( AP ` 2 ) d ) = ( x ( AP ` 2 ) ( y - x ) ) ) | 
						
							| 81 | 80 | sseq1d |  |-  ( d = ( y - x ) -> ( ( x ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) <-> ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 82 | 79 81 | rspc2ev |  |-  ( ( x e. NN /\ ( y - x ) e. NN /\ ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 83 | 41 48 77 82 | syl3anc |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) | 
						
							| 84 |  | fvex |  |-  ( F ` y ) e. _V | 
						
							| 85 |  | sneq |  |-  ( c = ( F ` y ) -> { c } = { ( F ` y ) } ) | 
						
							| 86 | 85 | imaeq2d |  |-  ( c = ( F ` y ) -> ( `' F " { c } ) = ( `' F " { ( F ` y ) } ) ) | 
						
							| 87 | 86 | sseq2d |  |-  ( c = ( F ` y ) -> ( ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) <-> ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 88 | 87 | 2rexbidv |  |-  ( c = ( F ` y ) -> ( E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) | 
						
							| 89 | 84 88 | spcev |  |-  ( E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) | 
						
							| 90 | 83 89 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) | 
						
							| 91 |  | ovex |  |-  ( 1 ... ( ( # ` R ) + 1 ) ) e. _V | 
						
							| 92 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 93 | 92 | a1i |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 e. NN0 ) | 
						
							| 94 | 91 93 57 | vdwmc |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( 2 MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) ) | 
						
							| 95 | 90 94 | mpbird |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 MonoAP F ) | 
						
							| 96 | 39 95 | sylanl2 |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 MonoAP F ) | 
						
							| 97 | 96 | expr |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> ( x < y -> 2 MonoAP F ) ) | 
						
							| 98 | 38 97 | mtod |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> -. x < y ) | 
						
							| 99 |  | simplr1 |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x e. ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 100 | 99 33 | syl |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x e. RR ) | 
						
							| 101 |  | simplr2 |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 102 | 34 101 | sselid |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> y e. RR ) | 
						
							| 103 | 100 102 | eqleltd |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> ( x = y <-> ( x <_ y /\ -. x < y ) ) ) | 
						
							| 104 | 37 98 103 | mpbir2and |  |-  ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x = y ) | 
						
							| 105 | 104 | ex |  |-  ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) | 
						
							| 106 | 22 31 35 36 105 | wlogle |  |-  ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) | 
						
							| 107 | 106 | ralrimivva |  |-  ( ph -> A. x e. ( 1 ... ( ( # ` R ) + 1 ) ) A. y e. ( 1 ... ( ( # ` R ) + 1 ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) | 
						
							| 108 |  | dff13 |  |-  ( F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R <-> ( F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R /\ A. x e. ( 1 ... ( ( # ` R ) + 1 ) ) A. y e. ( 1 ... ( ( # ` R ) + 1 ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 109 | 2 107 108 | sylanbrc |  |-  ( ph -> F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R ) | 
						
							| 110 |  | f1domg |  |-  ( R e. Fin -> ( F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R -> ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R ) ) | 
						
							| 111 | 1 109 110 | sylc |  |-  ( ph -> ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R ) | 
						
							| 112 |  | domnsym |  |-  ( ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R -> -. R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 113 | 111 112 | syl |  |-  ( ph -> -. R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) | 
						
							| 114 | 17 113 | pm2.65i |  |-  -. ph |