| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdw.r |
|- ( ph -> R e. Fin ) |
| 2 |
|
vdwlem12.f |
|- ( ph -> F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R ) |
| 3 |
|
vdwlem12.2 |
|- ( ph -> -. 2 MonoAP F ) |
| 4 |
|
hashcl |
|- ( R e. Fin -> ( # ` R ) e. NN0 ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( # ` R ) e. NN0 ) |
| 6 |
5
|
nn0red |
|- ( ph -> ( # ` R ) e. RR ) |
| 7 |
6
|
ltp1d |
|- ( ph -> ( # ` R ) < ( ( # ` R ) + 1 ) ) |
| 8 |
|
nn0p1nn |
|- ( ( # ` R ) e. NN0 -> ( ( # ` R ) + 1 ) e. NN ) |
| 9 |
5 8
|
syl |
|- ( ph -> ( ( # ` R ) + 1 ) e. NN ) |
| 10 |
9
|
nnnn0d |
|- ( ph -> ( ( # ` R ) + 1 ) e. NN0 ) |
| 11 |
|
hashfz1 |
|- ( ( ( # ` R ) + 1 ) e. NN0 -> ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) = ( ( # ` R ) + 1 ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) = ( ( # ` R ) + 1 ) ) |
| 13 |
7 12
|
breqtrrd |
|- ( ph -> ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) ) |
| 14 |
|
fzfi |
|- ( 1 ... ( ( # ` R ) + 1 ) ) e. Fin |
| 15 |
|
hashsdom |
|- ( ( R e. Fin /\ ( 1 ... ( ( # ` R ) + 1 ) ) e. Fin ) -> ( ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) <-> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) ) |
| 16 |
1 14 15
|
sylancl |
|- ( ph -> ( ( # ` R ) < ( # ` ( 1 ... ( ( # ` R ) + 1 ) ) ) <-> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) ) |
| 17 |
13 16
|
mpbid |
|- ( ph -> R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 18 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 19 |
|
fveq2 |
|- ( w = y -> ( F ` w ) = ( F ` y ) ) |
| 20 |
18 19
|
eqeqan12d |
|- ( ( z = x /\ w = y ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` x ) = ( F ` y ) ) ) |
| 21 |
|
eqeq12 |
|- ( ( z = x /\ w = y ) -> ( z = w <-> x = y ) ) |
| 22 |
20 21
|
imbi12d |
|- ( ( z = x /\ w = y ) -> ( ( ( F ` z ) = ( F ` w ) -> z = w ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 23 |
|
fveq2 |
|- ( z = y -> ( F ` z ) = ( F ` y ) ) |
| 24 |
|
fveq2 |
|- ( w = x -> ( F ` w ) = ( F ` x ) ) |
| 25 |
23 24
|
eqeqan12d |
|- ( ( z = y /\ w = x ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` y ) = ( F ` x ) ) ) |
| 26 |
|
eqcom |
|- ( ( F ` y ) = ( F ` x ) <-> ( F ` x ) = ( F ` y ) ) |
| 27 |
25 26
|
bitrdi |
|- ( ( z = y /\ w = x ) -> ( ( F ` z ) = ( F ` w ) <-> ( F ` x ) = ( F ` y ) ) ) |
| 28 |
|
eqeq12 |
|- ( ( z = y /\ w = x ) -> ( z = w <-> y = x ) ) |
| 29 |
|
eqcom |
|- ( y = x <-> x = y ) |
| 30 |
28 29
|
bitrdi |
|- ( ( z = y /\ w = x ) -> ( z = w <-> x = y ) ) |
| 31 |
27 30
|
imbi12d |
|- ( ( z = y /\ w = x ) -> ( ( ( F ` z ) = ( F ` w ) -> z = w ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 32 |
|
elfznn |
|- ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) -> x e. NN ) |
| 33 |
32
|
nnred |
|- ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) -> x e. RR ) |
| 34 |
33
|
ssriv |
|- ( 1 ... ( ( # ` R ) + 1 ) ) C_ RR |
| 35 |
34
|
a1i |
|- ( ph -> ( 1 ... ( ( # ` R ) + 1 ) ) C_ RR ) |
| 36 |
|
biidd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) -> ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 37 |
|
simplr3 |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x <_ y ) |
| 38 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> -. 2 MonoAP F ) |
| 39 |
|
3simpa |
|- ( ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) -> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) |
| 40 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 41 |
40 32
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. NN ) |
| 42 |
|
simprr |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x < y ) |
| 43 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 44 |
|
elfznn |
|- ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) -> y e. NN ) |
| 45 |
43 44
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. NN ) |
| 46 |
|
nnsub |
|- ( ( x e. NN /\ y e. NN ) -> ( x < y <-> ( y - x ) e. NN ) ) |
| 47 |
41 45 46
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x < y <-> ( y - x ) e. NN ) ) |
| 48 |
42 47
|
mpbid |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y - x ) e. NN ) |
| 49 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 50 |
49
|
fveq2i |
|- ( AP ` 2 ) = ( AP ` ( 1 + 1 ) ) |
| 51 |
50
|
oveqi |
|- ( x ( AP ` 2 ) ( y - x ) ) = ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) |
| 52 |
|
1nn0 |
|- 1 e. NN0 |
| 53 |
|
vdwapun |
|- ( ( 1 e. NN0 /\ x e. NN /\ ( y - x ) e. NN ) -> ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) |
| 54 |
52 41 48 53
|
mp3an2i |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` ( 1 + 1 ) ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) |
| 55 |
51 54
|
eqtrid |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` 2 ) ( y - x ) ) = ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) ) |
| 56 |
|
simprl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( F ` x ) = ( F ` y ) ) |
| 57 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R ) |
| 58 |
57
|
ffnd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> F Fn ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 59 |
|
fniniseg |
|- ( F Fn ( 1 ... ( ( # ` R ) + 1 ) ) -> ( x e. ( `' F " { ( F ` y ) } ) <-> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` x ) = ( F ` y ) ) ) ) |
| 60 |
58 59
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x e. ( `' F " { ( F ` y ) } ) <-> ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` x ) = ( F ` y ) ) ) ) |
| 61 |
40 56 60
|
mpbir2and |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. ( `' F " { ( F ` y ) } ) ) |
| 62 |
61
|
snssd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> { x } C_ ( `' F " { ( F ` y ) } ) ) |
| 63 |
41
|
nncnd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> x e. CC ) |
| 64 |
45
|
nncnd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. CC ) |
| 65 |
63 64
|
pncan3d |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x + ( y - x ) ) = y ) |
| 66 |
65
|
oveq1d |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) = ( y ( AP ` 1 ) ( y - x ) ) ) |
| 67 |
|
vdwap1 |
|- ( ( y e. NN /\ ( y - x ) e. NN ) -> ( y ( AP ` 1 ) ( y - x ) ) = { y } ) |
| 68 |
45 48 67
|
syl2anc |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y ( AP ` 1 ) ( y - x ) ) = { y } ) |
| 69 |
66 68
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) = { y } ) |
| 70 |
|
eqidd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( F ` y ) = ( F ` y ) ) |
| 71 |
|
fniniseg |
|- ( F Fn ( 1 ... ( ( # ` R ) + 1 ) ) -> ( y e. ( `' F " { ( F ` y ) } ) <-> ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` y ) = ( F ` y ) ) ) ) |
| 72 |
58 71
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( y e. ( `' F " { ( F ` y ) } ) <-> ( y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ ( F ` y ) = ( F ` y ) ) ) ) |
| 73 |
43 70 72
|
mpbir2and |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> y e. ( `' F " { ( F ` y ) } ) ) |
| 74 |
73
|
snssd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> { y } C_ ( `' F " { ( F ` y ) } ) ) |
| 75 |
69 74
|
eqsstrd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) |
| 76 |
62 75
|
unssd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( { x } u. ( ( x + ( y - x ) ) ( AP ` 1 ) ( y - x ) ) ) C_ ( `' F " { ( F ` y ) } ) ) |
| 77 |
55 76
|
eqsstrd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) |
| 78 |
|
oveq1 |
|- ( a = x -> ( a ( AP ` 2 ) d ) = ( x ( AP ` 2 ) d ) ) |
| 79 |
78
|
sseq1d |
|- ( a = x -> ( ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) <-> ( x ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) |
| 80 |
|
oveq2 |
|- ( d = ( y - x ) -> ( x ( AP ` 2 ) d ) = ( x ( AP ` 2 ) ( y - x ) ) ) |
| 81 |
80
|
sseq1d |
|- ( d = ( y - x ) -> ( ( x ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) <-> ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) ) |
| 82 |
79 81
|
rspc2ev |
|- ( ( x e. NN /\ ( y - x ) e. NN /\ ( x ( AP ` 2 ) ( y - x ) ) C_ ( `' F " { ( F ` y ) } ) ) -> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) |
| 83 |
41 48 77 82
|
syl3anc |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) |
| 84 |
|
fvex |
|- ( F ` y ) e. _V |
| 85 |
|
sneq |
|- ( c = ( F ` y ) -> { c } = { ( F ` y ) } ) |
| 86 |
85
|
imaeq2d |
|- ( c = ( F ` y ) -> ( `' F " { c } ) = ( `' F " { ( F ` y ) } ) ) |
| 87 |
86
|
sseq2d |
|- ( c = ( F ` y ) -> ( ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) <-> ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) |
| 88 |
87
|
2rexbidv |
|- ( c = ( F ` y ) -> ( E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) <-> E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) ) ) |
| 89 |
84 88
|
spcev |
|- ( E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { ( F ` y ) } ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) |
| 90 |
83 89
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) |
| 91 |
|
ovex |
|- ( 1 ... ( ( # ` R ) + 1 ) ) e. _V |
| 92 |
|
2nn0 |
|- 2 e. NN0 |
| 93 |
92
|
a1i |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 e. NN0 ) |
| 94 |
91 93 57
|
vdwmc |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> ( 2 MonoAP F <-> E. c E. a e. NN E. d e. NN ( a ( AP ` 2 ) d ) C_ ( `' F " { c } ) ) ) |
| 95 |
90 94
|
mpbird |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 MonoAP F ) |
| 96 |
39 95
|
sylanl2 |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( ( F ` x ) = ( F ` y ) /\ x < y ) ) -> 2 MonoAP F ) |
| 97 |
96
|
expr |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> ( x < y -> 2 MonoAP F ) ) |
| 98 |
38 97
|
mtod |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> -. x < y ) |
| 99 |
|
simplr1 |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x e. ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 100 |
99 33
|
syl |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x e. RR ) |
| 101 |
|
simplr2 |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 102 |
34 101
|
sselid |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> y e. RR ) |
| 103 |
100 102
|
eqleltd |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> ( x = y <-> ( x <_ y /\ -. x < y ) ) ) |
| 104 |
37 98 103
|
mpbir2and |
|- ( ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) /\ ( F ` x ) = ( F ` y ) ) -> x = y ) |
| 105 |
104
|
ex |
|- ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ x <_ y ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 106 |
22 31 35 36 105
|
wlogle |
|- ( ( ph /\ ( x e. ( 1 ... ( ( # ` R ) + 1 ) ) /\ y e. ( 1 ... ( ( # ` R ) + 1 ) ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 107 |
106
|
ralrimivva |
|- ( ph -> A. x e. ( 1 ... ( ( # ` R ) + 1 ) ) A. y e. ( 1 ... ( ( # ` R ) + 1 ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 108 |
|
dff13 |
|- ( F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R <-> ( F : ( 1 ... ( ( # ` R ) + 1 ) ) --> R /\ A. x e. ( 1 ... ( ( # ` R ) + 1 ) ) A. y e. ( 1 ... ( ( # ` R ) + 1 ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 109 |
2 107 108
|
sylanbrc |
|- ( ph -> F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R ) |
| 110 |
|
f1domg |
|- ( R e. Fin -> ( F : ( 1 ... ( ( # ` R ) + 1 ) ) -1-1-> R -> ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R ) ) |
| 111 |
1 109 110
|
sylc |
|- ( ph -> ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R ) |
| 112 |
|
domnsym |
|- ( ( 1 ... ( ( # ` R ) + 1 ) ) ~<_ R -> -. R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 113 |
111 112
|
syl |
|- ( ph -> -. R ~< ( 1 ... ( ( # ` R ) + 1 ) ) ) |
| 114 |
17 113
|
pm2.65i |
|- -. ph |