Step |
Hyp |
Ref |
Expression |
1 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
2 |
1
|
fveq2i |
|- ( AP ` 1 ) = ( AP ` ( 0 + 1 ) ) |
3 |
2
|
oveqi |
|- ( A ( AP ` 1 ) D ) = ( A ( AP ` ( 0 + 1 ) ) D ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
|
vdwapun |
|- ( ( 0 e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( 0 + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) |
6 |
4 5
|
mp3an1 |
|- ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` ( 0 + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) |
7 |
3 6
|
eqtrid |
|- ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 1 ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) |
8 |
|
nnaddcl |
|- ( ( A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) |
9 |
|
vdwap0 |
|- ( ( ( A + D ) e. NN /\ D e. NN ) -> ( ( A + D ) ( AP ` 0 ) D ) = (/) ) |
10 |
8 9
|
sylancom |
|- ( ( A e. NN /\ D e. NN ) -> ( ( A + D ) ( AP ` 0 ) D ) = (/) ) |
11 |
10
|
uneq2d |
|- ( ( A e. NN /\ D e. NN ) -> ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) = ( { A } u. (/) ) ) |
12 |
|
un0 |
|- ( { A } u. (/) ) = { A } |
13 |
11 12
|
eqtrdi |
|- ( ( A e. NN /\ D e. NN ) -> ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) = { A } ) |
14 |
7 13
|
eqtrd |
|- ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 1 ) D ) = { A } ) |