| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 2 | 1 | fveq2i |  |-  ( AP ` 1 ) = ( AP ` ( 0 + 1 ) ) | 
						
							| 3 | 2 | oveqi |  |-  ( A ( AP ` 1 ) D ) = ( A ( AP ` ( 0 + 1 ) ) D ) | 
						
							| 4 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 5 |  | vdwapun |  |-  ( ( 0 e. NN0 /\ A e. NN /\ D e. NN ) -> ( A ( AP ` ( 0 + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) | 
						
							| 6 | 4 5 | mp3an1 |  |-  ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` ( 0 + 1 ) ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) | 
						
							| 7 | 3 6 | eqtrid |  |-  ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 1 ) D ) = ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) ) | 
						
							| 8 |  | nnaddcl |  |-  ( ( A e. NN /\ D e. NN ) -> ( A + D ) e. NN ) | 
						
							| 9 |  | vdwap0 |  |-  ( ( ( A + D ) e. NN /\ D e. NN ) -> ( ( A + D ) ( AP ` 0 ) D ) = (/) ) | 
						
							| 10 | 8 9 | sylancom |  |-  ( ( A e. NN /\ D e. NN ) -> ( ( A + D ) ( AP ` 0 ) D ) = (/) ) | 
						
							| 11 | 10 | uneq2d |  |-  ( ( A e. NN /\ D e. NN ) -> ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) = ( { A } u. (/) ) ) | 
						
							| 12 |  | un0 |  |-  ( { A } u. (/) ) = { A } | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( A e. NN /\ D e. NN ) -> ( { A } u. ( ( A + D ) ( AP ` 0 ) D ) ) = { A } ) | 
						
							| 14 | 7 13 | eqtrd |  |-  ( ( A e. NN /\ D e. NN ) -> ( A ( AP ` 1 ) D ) = { A } ) |