Step |
Hyp |
Ref |
Expression |
0 |
|
czeta |
|- zeta |
1 |
|
vf |
|- f |
2 |
|
cc |
|- CC |
3 |
|
c1 |
|- 1 |
4 |
3
|
csn |
|- { 1 } |
5 |
2 4
|
cdif |
|- ( CC \ { 1 } ) |
6 |
|
ccncf |
|- -cn-> |
7 |
5 2 6
|
co |
|- ( ( CC \ { 1 } ) -cn-> CC ) |
8 |
|
vs |
|- s |
9 |
|
cmin |
|- - |
10 |
|
c2 |
|- 2 |
11 |
|
ccxp |
|- ^c |
12 |
8
|
cv |
|- s |
13 |
3 12 9
|
co |
|- ( 1 - s ) |
14 |
10 13 11
|
co |
|- ( 2 ^c ( 1 - s ) ) |
15 |
3 14 9
|
co |
|- ( 1 - ( 2 ^c ( 1 - s ) ) ) |
16 |
|
cmul |
|- x. |
17 |
1
|
cv |
|- f |
18 |
12 17
|
cfv |
|- ( f ` s ) |
19 |
15 18 16
|
co |
|- ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) |
20 |
|
vn |
|- n |
21 |
|
cn0 |
|- NN0 |
22 |
|
vk |
|- k |
23 |
|
cc0 |
|- 0 |
24 |
|
cfz |
|- ... |
25 |
20
|
cv |
|- n |
26 |
23 25 24
|
co |
|- ( 0 ... n ) |
27 |
3
|
cneg |
|- -u 1 |
28 |
|
cexp |
|- ^ |
29 |
22
|
cv |
|- k |
30 |
27 29 28
|
co |
|- ( -u 1 ^ k ) |
31 |
|
cbc |
|- _C |
32 |
25 29 31
|
co |
|- ( n _C k ) |
33 |
30 32 16
|
co |
|- ( ( -u 1 ^ k ) x. ( n _C k ) ) |
34 |
|
caddc |
|- + |
35 |
29 3 34
|
co |
|- ( k + 1 ) |
36 |
35 12 11
|
co |
|- ( ( k + 1 ) ^c s ) |
37 |
33 36 16
|
co |
|- ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) |
38 |
26 37 22
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) |
39 |
|
cdiv |
|- / |
40 |
25 3 34
|
co |
|- ( n + 1 ) |
41 |
10 40 28
|
co |
|- ( 2 ^ ( n + 1 ) ) |
42 |
38 41 39
|
co |
|- ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
43 |
21 42 20
|
csu |
|- sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
44 |
19 43
|
wceq |
|- ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
45 |
44 8 5
|
wral |
|- A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
46 |
45 1 7
|
crio |
|- ( iota_ f e. ( ( CC \ { 1 } ) -cn-> CC ) A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) ) |
47 |
0 46
|
wceq |
|- zeta = ( iota_ f e. ( ( CC \ { 1 } ) -cn-> CC ) A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) ) |