| Step |
Hyp |
Ref |
Expression |
| 0 |
|
czeta |
|- zeta |
| 1 |
|
vf |
|- f |
| 2 |
|
cc |
|- CC |
| 3 |
|
c1 |
|- 1 |
| 4 |
3
|
csn |
|- { 1 } |
| 5 |
2 4
|
cdif |
|- ( CC \ { 1 } ) |
| 6 |
|
ccncf |
|- -cn-> |
| 7 |
5 2 6
|
co |
|- ( ( CC \ { 1 } ) -cn-> CC ) |
| 8 |
|
vs |
|- s |
| 9 |
|
cmin |
|- - |
| 10 |
|
c2 |
|- 2 |
| 11 |
|
ccxp |
|- ^c |
| 12 |
8
|
cv |
|- s |
| 13 |
3 12 9
|
co |
|- ( 1 - s ) |
| 14 |
10 13 11
|
co |
|- ( 2 ^c ( 1 - s ) ) |
| 15 |
3 14 9
|
co |
|- ( 1 - ( 2 ^c ( 1 - s ) ) ) |
| 16 |
|
cmul |
|- x. |
| 17 |
1
|
cv |
|- f |
| 18 |
12 17
|
cfv |
|- ( f ` s ) |
| 19 |
15 18 16
|
co |
|- ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) |
| 20 |
|
vn |
|- n |
| 21 |
|
cn0 |
|- NN0 |
| 22 |
|
vk |
|- k |
| 23 |
|
cc0 |
|- 0 |
| 24 |
|
cfz |
|- ... |
| 25 |
20
|
cv |
|- n |
| 26 |
23 25 24
|
co |
|- ( 0 ... n ) |
| 27 |
3
|
cneg |
|- -u 1 |
| 28 |
|
cexp |
|- ^ |
| 29 |
22
|
cv |
|- k |
| 30 |
27 29 28
|
co |
|- ( -u 1 ^ k ) |
| 31 |
|
cbc |
|- _C |
| 32 |
25 29 31
|
co |
|- ( n _C k ) |
| 33 |
30 32 16
|
co |
|- ( ( -u 1 ^ k ) x. ( n _C k ) ) |
| 34 |
|
caddc |
|- + |
| 35 |
29 3 34
|
co |
|- ( k + 1 ) |
| 36 |
35 12 11
|
co |
|- ( ( k + 1 ) ^c s ) |
| 37 |
33 36 16
|
co |
|- ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) |
| 38 |
26 37 22
|
csu |
|- sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) |
| 39 |
|
cdiv |
|- / |
| 40 |
25 3 34
|
co |
|- ( n + 1 ) |
| 41 |
10 40 28
|
co |
|- ( 2 ^ ( n + 1 ) ) |
| 42 |
38 41 39
|
co |
|- ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
| 43 |
21 42 20
|
csu |
|- sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
| 44 |
19 43
|
wceq |
|- ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
| 45 |
44 8 5
|
wral |
|- A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) |
| 46 |
45 1 7
|
crio |
|- ( iota_ f e. ( ( CC \ { 1 } ) -cn-> CC ) A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) ) |
| 47 |
0 46
|
wceq |
|- zeta = ( iota_ f e. ( ( CC \ { 1 } ) -cn-> CC ) A. s e. ( CC \ { 1 } ) ( ( 1 - ( 2 ^c ( 1 - s ) ) ) x. ( f ` s ) ) = sum_ n e. NN0 ( sum_ k e. ( 0 ... n ) ( ( ( -u 1 ^ k ) x. ( n _C k ) ) x. ( ( k + 1 ) ^c s ) ) / ( 2 ^ ( n + 1 ) ) ) ) |