Metamath Proof Explorer


Definition df-zeta

Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1 , but going from the alternating zeta function to the regular zeta function requires dividing by 1 - 2 ^ ( 1 - s ) , which has zeroes other than 1 . To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Assertion df-zeta ζ = ( 𝑓 ∈ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czeta ζ
1 vf 𝑓
2 cc
3 c1 1
4 3 csn { 1 }
5 2 4 cdif ( ℂ ∖ { 1 } )
6 ccncf cn
7 5 2 6 co ( ( ℂ ∖ { 1 } ) –cn→ ℂ )
8 vs 𝑠
9 cmin
10 c2 2
11 ccxp 𝑐
12 8 cv 𝑠
13 3 12 9 co ( 1 − 𝑠 )
14 10 13 11 co ( 2 ↑𝑐 ( 1 − 𝑠 ) )
15 3 14 9 co ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) )
16 cmul ·
17 1 cv 𝑓
18 12 17 cfv ( 𝑓𝑠 )
19 15 18 16 co ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) )
20 vn 𝑛
21 cn0 0
22 vk 𝑘
23 cc0 0
24 cfz ...
25 20 cv 𝑛
26 23 25 24 co ( 0 ... 𝑛 )
27 3 cneg - 1
28 cexp
29 22 cv 𝑘
30 27 29 28 co ( - 1 ↑ 𝑘 )
31 cbc C
32 25 29 31 co ( 𝑛 C 𝑘 )
33 30 32 16 co ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) )
34 caddc +
35 29 3 34 co ( 𝑘 + 1 )
36 35 12 11 co ( ( 𝑘 + 1 ) ↑𝑐 𝑠 )
37 33 36 16 co ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) )
38 26 37 22 csu Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) )
39 cdiv /
40 25 3 34 co ( 𝑛 + 1 )
41 10 40 28 co ( 2 ↑ ( 𝑛 + 1 ) )
42 38 41 39 co ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) )
43 21 42 20 csu Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) )
44 19 43 wceq ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) )
45 44 8 5 wral 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) )
46 45 1 7 crio ( 𝑓 ∈ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) )
47 0 46 wceq ζ = ( 𝑓 ∈ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) )