Step |
Hyp |
Ref |
Expression |
0 |
|
czeta |
⊢ ζ |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cc |
⊢ ℂ |
3 |
|
c1 |
⊢ 1 |
4 |
3
|
csn |
⊢ { 1 } |
5 |
2 4
|
cdif |
⊢ ( ℂ ∖ { 1 } ) |
6 |
|
ccncf |
⊢ –cn→ |
7 |
5 2 6
|
co |
⊢ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) |
8 |
|
vs |
⊢ 𝑠 |
9 |
|
cmin |
⊢ − |
10 |
|
c2 |
⊢ 2 |
11 |
|
ccxp |
⊢ ↑𝑐 |
12 |
8
|
cv |
⊢ 𝑠 |
13 |
3 12 9
|
co |
⊢ ( 1 − 𝑠 ) |
14 |
10 13 11
|
co |
⊢ ( 2 ↑𝑐 ( 1 − 𝑠 ) ) |
15 |
3 14 9
|
co |
⊢ ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) |
16 |
|
cmul |
⊢ · |
17 |
1
|
cv |
⊢ 𝑓 |
18 |
12 17
|
cfv |
⊢ ( 𝑓 ‘ 𝑠 ) |
19 |
15 18 16
|
co |
⊢ ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓 ‘ 𝑠 ) ) |
20 |
|
vn |
⊢ 𝑛 |
21 |
|
cn0 |
⊢ ℕ0 |
22 |
|
vk |
⊢ 𝑘 |
23 |
|
cc0 |
⊢ 0 |
24 |
|
cfz |
⊢ ... |
25 |
20
|
cv |
⊢ 𝑛 |
26 |
23 25 24
|
co |
⊢ ( 0 ... 𝑛 ) |
27 |
3
|
cneg |
⊢ - 1 |
28 |
|
cexp |
⊢ ↑ |
29 |
22
|
cv |
⊢ 𝑘 |
30 |
27 29 28
|
co |
⊢ ( - 1 ↑ 𝑘 ) |
31 |
|
cbc |
⊢ C |
32 |
25 29 31
|
co |
⊢ ( 𝑛 C 𝑘 ) |
33 |
30 32 16
|
co |
⊢ ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) |
34 |
|
caddc |
⊢ + |
35 |
29 3 34
|
co |
⊢ ( 𝑘 + 1 ) |
36 |
35 12 11
|
co |
⊢ ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) |
37 |
33 36 16
|
co |
⊢ ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) |
38 |
26 37 22
|
csu |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) |
39 |
|
cdiv |
⊢ / |
40 |
25 3 34
|
co |
⊢ ( 𝑛 + 1 ) |
41 |
10 40 28
|
co |
⊢ ( 2 ↑ ( 𝑛 + 1 ) ) |
42 |
38 41 39
|
co |
⊢ ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) |
43 |
21 42 20
|
csu |
⊢ Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) |
44 |
19 43
|
wceq |
⊢ ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓 ‘ 𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) |
45 |
44 8 5
|
wral |
⊢ ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓 ‘ 𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) |
46 |
45 1 7
|
crio |
⊢ ( ℩ 𝑓 ∈ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓 ‘ 𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) ) |
47 |
0 46
|
wceq |
⊢ ζ = ( ℩ 𝑓 ∈ ( ( ℂ ∖ { 1 } ) –cn→ ℂ ) ∀ 𝑠 ∈ ( ℂ ∖ { 1 } ) ( ( 1 − ( 2 ↑𝑐 ( 1 − 𝑠 ) ) ) · ( 𝑓 ‘ 𝑠 ) ) = Σ 𝑛 ∈ ℕ0 ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( ( - 1 ↑ 𝑘 ) · ( 𝑛 C 𝑘 ) ) · ( ( 𝑘 + 1 ) ↑𝑐 𝑠 ) ) / ( 2 ↑ ( 𝑛 + 1 ) ) ) ) |