| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zetacvg.1 |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 2 |
|
zetacvg.2 |
⊢ ( 𝜑 → 1 < ( ℜ ‘ 𝑆 ) ) |
| 3 |
|
zetacvg.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑘 ↑𝑐 - 𝑆 ) ) |
| 4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 5 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 6 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) = ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 8 |
|
ovex |
⊢ ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ V |
| 9 |
6 7 8
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) = ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) = ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 11 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 13 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 15 |
1
|
negcld |
⊢ ( 𝜑 → - 𝑆 ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → - 𝑆 ∈ ℂ ) |
| 17 |
12 14 16
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ↑𝑐 - 𝑆 ) = ( exp ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) |
| 18 |
3 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( exp ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( exp ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) ) |
| 20 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 21 |
20
|
relogcld |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 22 |
21
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 23 |
|
mulcl |
⊢ ( ( - 𝑆 ∈ ℂ ∧ ( log ‘ 𝑘 ) ∈ ℂ ) → ( - 𝑆 · ( log ‘ 𝑘 ) ) ∈ ℂ ) |
| 24 |
15 22 23
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - 𝑆 · ( log ‘ 𝑘 ) ) ∈ ℂ ) |
| 25 |
|
absef |
⊢ ( ( - 𝑆 · ( log ‘ 𝑘 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( exp ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) ) |
| 27 |
|
remul |
⊢ ( ( - 𝑆 ∈ ℂ ∧ ( log ‘ 𝑘 ) ∈ ℂ ) → ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) = ( ( ( ℜ ‘ - 𝑆 ) · ( ℜ ‘ ( log ‘ 𝑘 ) ) ) − ( ( ℑ ‘ - 𝑆 ) · ( ℑ ‘ ( log ‘ 𝑘 ) ) ) ) ) |
| 28 |
15 22 27
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) = ( ( ( ℜ ‘ - 𝑆 ) · ( ℜ ‘ ( log ‘ 𝑘 ) ) ) − ( ( ℑ ‘ - 𝑆 ) · ( ℑ ‘ ( log ‘ 𝑘 ) ) ) ) ) |
| 29 |
1
|
renegd |
⊢ ( 𝜑 → ( ℜ ‘ - 𝑆 ) = - ( ℜ ‘ 𝑆 ) ) |
| 30 |
21
|
rered |
⊢ ( 𝑘 ∈ ℕ → ( ℜ ‘ ( log ‘ 𝑘 ) ) = ( log ‘ 𝑘 ) ) |
| 31 |
29 30
|
oveqan12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℜ ‘ - 𝑆 ) · ( ℜ ‘ ( log ‘ 𝑘 ) ) ) = ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 32 |
21
|
reim0d |
⊢ ( 𝑘 ∈ ℕ → ( ℑ ‘ ( log ‘ 𝑘 ) ) = 0 ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ( ℑ ‘ - 𝑆 ) · ( ℑ ‘ ( log ‘ 𝑘 ) ) ) = ( ( ℑ ‘ - 𝑆 ) · 0 ) ) |
| 34 |
|
imcl |
⊢ ( - 𝑆 ∈ ℂ → ( ℑ ‘ - 𝑆 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( - 𝑆 ∈ ℂ → ( ℑ ‘ - 𝑆 ) ∈ ℂ ) |
| 36 |
15 35
|
syl |
⊢ ( 𝜑 → ( ℑ ‘ - 𝑆 ) ∈ ℂ ) |
| 37 |
36
|
mul01d |
⊢ ( 𝜑 → ( ( ℑ ‘ - 𝑆 ) · 0 ) = 0 ) |
| 38 |
33 37
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℑ ‘ - 𝑆 ) · ( ℑ ‘ ( log ‘ 𝑘 ) ) ) = 0 ) |
| 39 |
31 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ℜ ‘ - 𝑆 ) · ( ℜ ‘ ( log ‘ 𝑘 ) ) ) − ( ( ℑ ‘ - 𝑆 ) · ( ℑ ‘ ( log ‘ 𝑘 ) ) ) ) = ( ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) − 0 ) ) |
| 40 |
1
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝑆 ) ∈ ℝ ) |
| 41 |
40
|
renegcld |
⊢ ( 𝜑 → - ( ℜ ‘ 𝑆 ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( 𝜑 → - ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 43 |
|
mulcl |
⊢ ( ( - ( ℜ ‘ 𝑆 ) ∈ ℂ ∧ ( log ‘ 𝑘 ) ∈ ℂ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℂ ) |
| 44 |
42 22 43
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℂ ) |
| 45 |
44
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) − 0 ) = ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 46 |
28 39 45
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) = ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) = ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) |
| 48 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → - ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 49 |
12 14 48
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) = ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) |
| 50 |
47 49
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( ℜ ‘ ( - 𝑆 · ( log ‘ 𝑘 ) ) ) ) = ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 51 |
19 26 50
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 52 |
10 51
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 |
12 16
|
cxpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ↑𝑐 - 𝑆 ) ∈ ℂ ) |
| 54 |
3 53
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 55 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 56 |
|
1re |
⊢ 1 ∈ ℝ |
| 57 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝑆 ) ∈ ℝ ) → ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ) |
| 58 |
56 40 57
|
sylancr |
⊢ ( 𝜑 → ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ) |
| 59 |
|
rpcxpcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ) → ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℝ+ ) |
| 60 |
55 58 59
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℝ+ ) |
| 61 |
60
|
rpcnd |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℂ ) |
| 62 |
|
recl |
⊢ ( 𝑆 ∈ ℂ → ( ℜ ‘ 𝑆 ) ∈ ℝ ) |
| 63 |
62
|
recnd |
⊢ ( 𝑆 ∈ ℂ → ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 64 |
1 63
|
syl |
⊢ ( 𝜑 → ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 65 |
64
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ℜ ‘ 𝑆 ) ) = ( ℜ ‘ 𝑆 ) ) |
| 66 |
2 65
|
breqtrrd |
⊢ ( 𝜑 → 1 < ( 0 + ( ℜ ‘ 𝑆 ) ) ) |
| 67 |
|
0re |
⊢ 0 ∈ ℝ |
| 68 |
|
ltsubadd |
⊢ ( ( 1 ∈ ℝ ∧ ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ 1 < ( 0 + ( ℜ ‘ 𝑆 ) ) ) ) |
| 69 |
56 67 68
|
mp3an13 |
⊢ ( ( ℜ ‘ 𝑆 ) ∈ ℝ → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ 1 < ( 0 + ( ℜ ‘ 𝑆 ) ) ) ) |
| 70 |
40 69
|
syl |
⊢ ( 𝜑 → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ 1 < ( 0 + ( ℜ ‘ 𝑆 ) ) ) ) |
| 71 |
66 70
|
mpbird |
⊢ ( 𝜑 → ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ) |
| 72 |
|
2re |
⊢ 2 ∈ ℝ |
| 73 |
|
1lt2 |
⊢ 1 < 2 |
| 74 |
|
cxplt |
⊢ ( ( ( 2 ∈ ℝ ∧ 1 < 2 ) ∧ ( ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) ) → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) < ( 2 ↑𝑐 0 ) ) ) |
| 75 |
72 73 74
|
mpanl12 |
⊢ ( ( ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) < ( 2 ↑𝑐 0 ) ) ) |
| 76 |
58 67 75
|
sylancl |
⊢ ( 𝜑 → ( ( 1 − ( ℜ ‘ 𝑆 ) ) < 0 ↔ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) < ( 2 ↑𝑐 0 ) ) ) |
| 77 |
71 76
|
mpbid |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) < ( 2 ↑𝑐 0 ) ) |
| 78 |
60
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) ) |
| 79 |
|
absid |
⊢ ( ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) → ( abs ‘ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) = ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) = ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) |
| 81 |
|
2cn |
⊢ 2 ∈ ℂ |
| 82 |
|
cxp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑𝑐 0 ) = 1 ) |
| 83 |
81 82
|
ax-mp |
⊢ ( 2 ↑𝑐 0 ) = 1 |
| 84 |
83
|
eqcomi |
⊢ 1 = ( 2 ↑𝑐 0 ) |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → 1 = ( 2 ↑𝑐 0 ) ) |
| 86 |
77 80 85
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) < 1 ) |
| 87 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) |
| 88 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) |
| 89 |
|
ovex |
⊢ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ∈ V |
| 90 |
87 88 89
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) |
| 91 |
90
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) |
| 92 |
61 86 91
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) ) ) |
| 93 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ∈ V |
| 94 |
|
ovex |
⊢ ( 1 / ( 1 − ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) ) ∈ V |
| 95 |
93 94
|
breldm |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 96 |
92 95
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 97 |
|
rpcxpcl |
⊢ ( ( 𝑘 ∈ ℝ+ ∧ - ( ℜ ‘ 𝑆 ) ∈ ℝ ) → ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ ℝ+ ) |
| 98 |
20 41 97
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ ℝ+ ) |
| 99 |
98
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ ℝ ) |
| 100 |
10 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 101 |
98
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 102 |
101 10
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) ) |
| 103 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 104 |
103
|
lep1d |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 105 |
20
|
reeflogd |
⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( log ‘ 𝑘 ) ) = 𝑘 ) |
| 106 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 107 |
106
|
nnrpd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℝ+ ) |
| 108 |
107
|
reeflogd |
⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( log ‘ ( 𝑘 + 1 ) ) ) = ( 𝑘 + 1 ) ) |
| 109 |
104 105 108
|
3brtr4d |
⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( log ‘ 𝑘 ) ) ≤ ( exp ‘ ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 110 |
107
|
relogcld |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 111 |
|
efle |
⊢ ( ( ( log ‘ 𝑘 ) ∈ ℝ ∧ ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ↔ ( exp ‘ ( log ‘ 𝑘 ) ) ≤ ( exp ‘ ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 112 |
21 110 111
|
syl2anc |
⊢ ( 𝑘 ∈ ℕ → ( ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ↔ ( exp ‘ ( log ‘ 𝑘 ) ) ≤ ( exp ‘ ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 113 |
109 112
|
mpbird |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ) |
| 115 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 116 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 117 |
116
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
| 118 |
117
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 119 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ℜ ‘ 𝑆 ) ∈ ℝ ) |
| 120 |
67
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 121 |
56
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 122 |
|
0lt1 |
⊢ 0 < 1 |
| 123 |
122
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 124 |
120 121 40 123 2
|
lttrd |
⊢ ( 𝜑 → 0 < ( ℜ ‘ 𝑆 ) ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 0 < ( ℜ ‘ 𝑆 ) ) |
| 126 |
|
lemul2 |
⊢ ( ( ( log ‘ 𝑘 ) ∈ ℝ ∧ ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝑆 ) ) ) → ( ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ↔ ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ≤ ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 127 |
115 118 119 125 126
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑘 ) ≤ ( log ‘ ( 𝑘 + 1 ) ) ↔ ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ≤ ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 128 |
114 127
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ≤ ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 129 |
|
remulcl |
⊢ ( ( ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ ( log ‘ 𝑘 ) ∈ ℝ ) → ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
| 130 |
40 21 129
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
| 131 |
|
remulcl |
⊢ ( ( ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 132 |
40 110 131
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 133 |
130 132
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ≤ ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ↔ - ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ≤ - ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) |
| 134 |
128 133
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → - ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ≤ - ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 135 |
110
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 136 |
|
mulneg1 |
⊢ ( ( ( ℜ ‘ 𝑆 ) ∈ ℂ ∧ ( log ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) = - ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 137 |
64 135 136
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) = - ( ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) |
| 138 |
|
mulneg1 |
⊢ ( ( ( ℜ ‘ 𝑆 ) ∈ ℂ ∧ ( log ‘ 𝑘 ) ∈ ℂ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) = - ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 139 |
64 22 138
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) = - ( ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 140 |
134 137 139
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ≤ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) |
| 141 |
|
remulcl |
⊢ ( ( - ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ ( log ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 142 |
41 110 141
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 143 |
|
remulcl |
⊢ ( ( - ( ℜ ‘ 𝑆 ) ∈ ℝ ∧ ( log ‘ 𝑘 ) ∈ ℝ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
| 144 |
41 21 143
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) |
| 145 |
|
efle |
⊢ ( ( ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ∈ ℝ ) → ( ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ≤ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ↔ ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) ) |
| 146 |
142 144 145
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ≤ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ↔ ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) ) |
| 147 |
140 146
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ≤ ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) |
| 148 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) = ( ( 𝑘 + 1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 149 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ V |
| 150 |
148 7 149
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 151 |
116 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 152 |
116
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 153 |
116
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ≠ 0 ) |
| 154 |
152 153 48
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) = ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 155 |
151 154
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 156 |
10 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) = ( exp ‘ ( - ( ℜ ‘ 𝑆 ) · ( log ‘ 𝑘 ) ) ) ) |
| 157 |
147 155 156
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) ) |
| 158 |
58
|
recnd |
⊢ ( 𝜑 → ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℂ ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℂ ) |
| 160 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 161 |
160
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℝ ) |
| 162 |
161
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 163 |
159 162
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 − ( ℜ ‘ 𝑆 ) ) · 𝑚 ) = ( 𝑚 · ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) |
| 164 |
163
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 ( ( 1 − ( ℜ ‘ 𝑆 ) ) · 𝑚 ) ) = ( 2 ↑𝑐 ( 𝑚 · ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) ) |
| 165 |
55
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 2 ∈ ℝ+ ) |
| 166 |
165 161 159
|
cxpmuld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 ( 𝑚 · ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) = ( ( 2 ↑𝑐 𝑚 ) ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ) |
| 167 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 168 |
|
cxpexp |
⊢ ( ( 2 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 𝑚 ) = ( 2 ↑ 𝑚 ) ) |
| 169 |
81 167 168
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 𝑚 ) = ( 2 ↑ 𝑚 ) ) |
| 170 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 171 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 172 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ ( ℜ ‘ 𝑆 ) ∈ ℂ ) → ( 1 + - ( ℜ ‘ 𝑆 ) ) = ( 1 − ( ℜ ‘ 𝑆 ) ) ) |
| 173 |
170 171 172
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 + - ( ℜ ‘ 𝑆 ) ) = ( 1 − ( ℜ ‘ 𝑆 ) ) ) |
| 174 |
173
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 − ( ℜ ‘ 𝑆 ) ) = ( 1 + - ( ℜ ‘ 𝑆 ) ) ) |
| 175 |
169 174
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑𝑐 𝑚 ) ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) = ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1 + - ( ℜ ‘ 𝑆 ) ) ) ) |
| 176 |
164 166 175
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 ( ( 1 − ( ℜ ‘ 𝑆 ) ) · 𝑚 ) ) = ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1 + - ( ℜ ‘ 𝑆 ) ) ) ) |
| 177 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 1 − ( ℜ ‘ 𝑆 ) ) ∈ ℝ ) |
| 178 |
165 177 162
|
cxpmuld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑𝑐 ( ( 1 − ( ℜ ‘ 𝑆 ) ) · 𝑚 ) ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 ) ) |
| 179 |
|
2nn |
⊢ 2 ∈ ℕ |
| 180 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 181 |
179 180
|
mpan |
⊢ ( 𝑚 ∈ ℕ0 → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 182 |
181
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 183 |
182
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℂ ) |
| 184 |
182
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ≠ 0 ) |
| 185 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 186 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → - ( ℜ ‘ 𝑆 ) ∈ ℂ ) |
| 187 |
183 184 185 186
|
cxpaddd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1 + - ( ℜ ‘ 𝑆 ) ) ) = ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) |
| 188 |
176 178 187
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 ) = ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) |
| 189 |
|
cxpexp |
⊢ ( ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) |
| 190 |
61 189
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 ) = ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) |
| 191 |
183
|
cxp1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑ 𝑚 ) ↑𝑐 1 ) = ( 2 ↑ 𝑚 ) ) |
| 192 |
191
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) = ( ( 2 ↑ 𝑚 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) |
| 193 |
188 190 192
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) = ( ( 2 ↑ 𝑚 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) |
| 194 |
179 167 180
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 195 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 ↑ 𝑚 ) → ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) = ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 196 |
|
ovex |
⊢ ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ∈ V |
| 197 |
195 7 196
|
fvmpt |
⊢ ( ( 2 ↑ 𝑚 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) = ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 198 |
194 197
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) = ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) |
| 199 |
198
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 2 ↑ 𝑚 ) · ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) ) = ( ( 2 ↑ 𝑚 ) · ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) |
| 200 |
193 91 199
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 ) = ( ( 2 ↑ 𝑚 ) · ( ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) ) ) |
| 201 |
100 102 157 200
|
climcnds |
⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑𝑐 ( 1 − ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) ) |
| 202 |
96 201
|
mpbird |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) ∈ dom ⇝ ) |
| 203 |
4 5 52 54 202
|
abscvgcvg |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |