| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zetacvg.1 | ⊢ ( 𝜑  →  𝑆  ∈  ℂ ) | 
						
							| 2 |  | zetacvg.2 | ⊢ ( 𝜑  →  1  <  ( ℜ ‘ 𝑆 ) ) | 
						
							| 3 |  | zetacvg.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝑘 ↑𝑐 - 𝑆 ) ) | 
						
							| 4 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  =  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 8 |  | ovex | ⊢ ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  V | 
						
							| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 )  =  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 )  =  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 11 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 13 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ≠  0 ) | 
						
							| 15 | 1 | negcld | ⊢ ( 𝜑  →  - 𝑆  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  - 𝑆  ∈  ℂ ) | 
						
							| 17 | 12 14 16 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑𝑐 - 𝑆 )  =  ( exp ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 18 | 3 17 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( exp ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( abs ‘ ( exp ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 20 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 21 | 20 | relogcld | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 22 | 21 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 23 |  | mulcl | ⊢ ( ( - 𝑆  ∈  ℂ  ∧  ( log ‘ 𝑘 )  ∈  ℂ )  →  ( - 𝑆  ·  ( log ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 24 | 15 22 23 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - 𝑆  ·  ( log ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 25 |  | absef | ⊢ ( ( - 𝑆  ·  ( log ‘ 𝑘 ) )  ∈  ℂ  →  ( abs ‘ ( exp ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) )  =  ( exp ‘ ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( exp ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) )  =  ( exp ‘ ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 27 |  | remul | ⊢ ( ( - 𝑆  ∈  ℂ  ∧  ( log ‘ 𝑘 )  ∈  ℂ )  →  ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) )  =  ( ( ( ℜ ‘ - 𝑆 )  ·  ( ℜ ‘ ( log ‘ 𝑘 ) ) )  −  ( ( ℑ ‘ - 𝑆 )  ·  ( ℑ ‘ ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 28 | 15 22 27 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) )  =  ( ( ( ℜ ‘ - 𝑆 )  ·  ( ℜ ‘ ( log ‘ 𝑘 ) ) )  −  ( ( ℑ ‘ - 𝑆 )  ·  ( ℑ ‘ ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 29 | 1 | renegd | ⊢ ( 𝜑  →  ( ℜ ‘ - 𝑆 )  =  - ( ℜ ‘ 𝑆 ) ) | 
						
							| 30 | 21 | rered | ⊢ ( 𝑘  ∈  ℕ  →  ( ℜ ‘ ( log ‘ 𝑘 ) )  =  ( log ‘ 𝑘 ) ) | 
						
							| 31 | 29 30 | oveqan12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℜ ‘ - 𝑆 )  ·  ( ℜ ‘ ( log ‘ 𝑘 ) ) )  =  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 32 | 21 | reim0d | ⊢ ( 𝑘  ∈  ℕ  →  ( ℑ ‘ ( log ‘ 𝑘 ) )  =  0 ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ℑ ‘ - 𝑆 )  ·  ( ℑ ‘ ( log ‘ 𝑘 ) ) )  =  ( ( ℑ ‘ - 𝑆 )  ·  0 ) ) | 
						
							| 34 |  | imcl | ⊢ ( - 𝑆  ∈  ℂ  →  ( ℑ ‘ - 𝑆 )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( - 𝑆  ∈  ℂ  →  ( ℑ ‘ - 𝑆 )  ∈  ℂ ) | 
						
							| 36 | 15 35 | syl | ⊢ ( 𝜑  →  ( ℑ ‘ - 𝑆 )  ∈  ℂ ) | 
						
							| 37 | 36 | mul01d | ⊢ ( 𝜑  →  ( ( ℑ ‘ - 𝑆 )  ·  0 )  =  0 ) | 
						
							| 38 | 33 37 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℑ ‘ - 𝑆 )  ·  ( ℑ ‘ ( log ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 39 | 31 38 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℜ ‘ - 𝑆 )  ·  ( ℜ ‘ ( log ‘ 𝑘 ) ) )  −  ( ( ℑ ‘ - 𝑆 )  ·  ( ℑ ‘ ( log ‘ 𝑘 ) ) ) )  =  ( ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  −  0 ) ) | 
						
							| 40 | 1 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 41 | 40 | renegcld | ⊢ ( 𝜑  →  - ( ℜ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 42 | 41 | recnd | ⊢ ( 𝜑  →  - ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 43 |  | mulcl | ⊢ ( ( - ( ℜ ‘ 𝑆 )  ∈  ℂ  ∧  ( log ‘ 𝑘 )  ∈  ℂ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 44 | 42 22 43 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 45 | 44 | subid1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  −  0 )  =  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 46 | 28 39 45 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) )  =  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) )  =  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 48 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  - ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 49 | 12 14 48 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  =  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 50 | 47 49 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( ℜ ‘ ( - 𝑆  ·  ( log ‘ 𝑘 ) ) ) )  =  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 51 | 19 26 50 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 52 | 10 51 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 )  =  ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 53 | 12 16 | cxpcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑𝑐 - 𝑆 )  ∈  ℂ ) | 
						
							| 54 | 3 53 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 55 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 56 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 57 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ℜ ‘ 𝑆 )  ∈  ℝ )  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ ) | 
						
							| 58 | 56 40 57 | sylancr | ⊢ ( 𝜑  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ ) | 
						
							| 59 |  | rpcxpcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ )  →  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℝ+ ) | 
						
							| 60 | 55 58 59 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℝ+ ) | 
						
							| 61 | 60 | rpcnd | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℂ ) | 
						
							| 62 |  | recl | ⊢ ( 𝑆  ∈  ℂ  →  ( ℜ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( 𝑆  ∈  ℂ  →  ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 64 | 1 63 | syl | ⊢ ( 𝜑  →  ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 65 | 64 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( ℜ ‘ 𝑆 ) )  =  ( ℜ ‘ 𝑆 ) ) | 
						
							| 66 | 2 65 | breqtrrd | ⊢ ( 𝜑  →  1  <  ( 0  +  ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 67 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 68 |  | ltsubadd | ⊢ ( ( 1  ∈  ℝ  ∧  ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  1  <  ( 0  +  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 69 | 56 67 68 | mp3an13 | ⊢ ( ( ℜ ‘ 𝑆 )  ∈  ℝ  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  1  <  ( 0  +  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 70 | 40 69 | syl | ⊢ ( 𝜑  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  1  <  ( 0  +  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 71 | 66 70 | mpbird | ⊢ ( 𝜑  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0 ) | 
						
							| 72 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 73 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 74 |  | cxplt | ⊢ ( ( ( 2  ∈  ℝ  ∧  1  <  2 )  ∧  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ  ∧  0  ∈  ℝ ) )  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  <  ( 2 ↑𝑐 0 ) ) ) | 
						
							| 75 | 72 73 74 | mpanl12 | ⊢ ( ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  <  ( 2 ↑𝑐 0 ) ) ) | 
						
							| 76 | 58 67 75 | sylancl | ⊢ ( 𝜑  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  <  0  ↔  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  <  ( 2 ↑𝑐 0 ) ) ) | 
						
							| 77 | 71 76 | mpbid | ⊢ ( 𝜑  →  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  <  ( 2 ↑𝑐 0 ) ) | 
						
							| 78 | 60 | rprege0d | ⊢ ( 𝜑  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) ) | 
						
							| 79 |  | absid | ⊢ ( ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℝ  ∧  0  ≤  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) )  →  ( abs ‘ ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) )  =  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) )  =  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 81 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 82 |  | cxp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑𝑐 0 )  =  1 ) | 
						
							| 83 | 81 82 | ax-mp | ⊢ ( 2 ↑𝑐 0 )  =  1 | 
						
							| 84 | 83 | eqcomi | ⊢ 1  =  ( 2 ↑𝑐 0 ) | 
						
							| 85 | 84 | a1i | ⊢ ( 𝜑  →  1  =  ( 2 ↑𝑐 0 ) ) | 
						
							| 86 | 77 80 85 | 3brtr4d | ⊢ ( 𝜑  →  ( abs ‘ ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) )  <  1 ) | 
						
							| 87 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) | 
						
							| 89 |  | ovex | ⊢ ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 )  ∈  V | 
						
							| 90 | 87 88 89 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) | 
						
							| 92 | 61 86 91 | geolim | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) ) ) | 
						
							| 93 |  | seqex | ⊢ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ∈  V | 
						
							| 94 |  | ovex | ⊢ ( 1  /  ( 1  −  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) )  ∈  V | 
						
							| 95 | 93 94 | breldm | ⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 96 | 92 95 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 97 |  | rpcxpcl | ⊢ ( ( 𝑘  ∈  ℝ+  ∧  - ( ℜ ‘ 𝑆 )  ∈  ℝ )  →  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  ℝ+ ) | 
						
							| 98 | 20 41 97 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  ℝ+ ) | 
						
							| 99 | 98 | rpred | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  ℝ ) | 
						
							| 100 | 10 99 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 101 | 98 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 𝑘 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 102 | 101 10 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) ) | 
						
							| 103 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 104 | 103 | lep1d | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≤  ( 𝑘  +  1 ) ) | 
						
							| 105 | 20 | reeflogd | ⊢ ( 𝑘  ∈  ℕ  →  ( exp ‘ ( log ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 106 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 107 | 106 | nnrpd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℝ+ ) | 
						
							| 108 | 107 | reeflogd | ⊢ ( 𝑘  ∈  ℕ  →  ( exp ‘ ( log ‘ ( 𝑘  +  1 ) ) )  =  ( 𝑘  +  1 ) ) | 
						
							| 109 | 104 105 108 | 3brtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( exp ‘ ( log ‘ 𝑘 ) )  ≤  ( exp ‘ ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 110 | 107 | relogcld | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 111 |  | efle | ⊢ ( ( ( log ‘ 𝑘 )  ∈  ℝ  ∧  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  →  ( ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) )  ↔  ( exp ‘ ( log ‘ 𝑘 ) )  ≤  ( exp ‘ ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 112 | 21 110 111 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) )  ↔  ( exp ‘ ( log ‘ 𝑘 ) )  ≤  ( exp ‘ ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 113 | 109 112 | mpbird | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 115 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 116 | 106 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 117 | 116 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℝ+ ) | 
						
							| 118 | 117 | relogcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ ) | 
						
							| 119 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ℜ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 120 | 67 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 121 | 56 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 122 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 123 | 122 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 124 | 120 121 40 123 2 | lttrd | ⊢ ( 𝜑  →  0  <  ( ℜ ‘ 𝑆 ) ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  ( ℜ ‘ 𝑆 ) ) | 
						
							| 126 |  | lemul2 | ⊢ ( ( ( log ‘ 𝑘 )  ∈  ℝ  ∧  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ  ∧  ( ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  0  <  ( ℜ ‘ 𝑆 ) ) )  →  ( ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) )  ↔  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ≤  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 127 | 115 118 119 125 126 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( log ‘ 𝑘 )  ≤  ( log ‘ ( 𝑘  +  1 ) )  ↔  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ≤  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 128 | 114 127 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ≤  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 129 |  | remulcl | ⊢ ( ( ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  ( log ‘ 𝑘 )  ∈  ℝ )  →  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 130 | 40 21 129 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 131 |  | remulcl | ⊢ ( ( ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  →  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 132 | 40 110 131 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 133 | 130 132 | lenegd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ≤  ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ↔  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ≤  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 134 | 128 133 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ≤  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 135 | 110 | recnd | ⊢ ( 𝑘  ∈  ℕ  →  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℂ ) | 
						
							| 136 |  | mulneg1 | ⊢ ( ( ( ℜ ‘ 𝑆 )  ∈  ℂ  ∧  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℂ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  =  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 137 | 64 135 136 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  =  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 138 |  | mulneg1 | ⊢ ( ( ( ℜ ‘ 𝑆 )  ∈  ℂ  ∧  ( log ‘ 𝑘 )  ∈  ℂ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  =  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 139 | 64 22 138 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  =  - ( ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 140 | 134 137 139 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ≤  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) | 
						
							| 141 |  | remulcl | ⊢ ( ( - ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  ( log ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 142 | 41 110 141 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ ) | 
						
							| 143 |  | remulcl | ⊢ ( ( - ( ℜ ‘ 𝑆 )  ∈  ℝ  ∧  ( log ‘ 𝑘 )  ∈  ℝ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 144 | 41 21 143 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 145 |  | efle | ⊢ ( ( ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ∈  ℝ  ∧  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ≤  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ↔  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 146 | 142 144 145 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) )  ≤  ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) )  ↔  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) ) | 
						
							| 147 | 140 146 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) )  ≤  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 148 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  =  ( ( 𝑘  +  1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 149 |  | ovex | ⊢ ( ( 𝑘  +  1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  V | 
						
							| 150 | 148 7 149 | fvmpt | ⊢ ( ( 𝑘  +  1 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 151 | 116 150 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 152 | 116 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℂ ) | 
						
							| 153 | 116 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ≠  0 ) | 
						
							| 154 | 152 153 48 | cxpefd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) )  =  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 155 | 151 154 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ ( 𝑘  +  1 ) ) ) ) ) | 
						
							| 156 | 10 49 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 )  =  ( exp ‘ ( - ( ℜ ‘ 𝑆 )  ·  ( log ‘ 𝑘 ) ) ) ) | 
						
							| 157 | 147 155 156 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 𝑘  +  1 ) )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ 𝑘 ) ) | 
						
							| 158 | 58 | recnd | ⊢ ( 𝜑  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℂ ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℂ ) | 
						
							| 160 |  | nn0re | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℝ ) | 
						
							| 161 | 160 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℝ ) | 
						
							| 162 | 161 | recnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℂ ) | 
						
							| 163 | 159 162 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ·  𝑚 )  =  ( 𝑚  ·  ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 164 | 163 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ·  𝑚 ) )  =  ( 2 ↑𝑐 ( 𝑚  ·  ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) ) | 
						
							| 165 | 55 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  2  ∈  ℝ+ ) | 
						
							| 166 | 165 161 159 | cxpmuld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 ( 𝑚  ·  ( 1  −  ( ℜ ‘ 𝑆 ) ) ) )  =  ( ( 2 ↑𝑐 𝑚 ) ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 167 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 168 |  | cxpexp | ⊢ ( ( 2  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 𝑚 )  =  ( 2 ↑ 𝑚 ) ) | 
						
							| 169 | 81 167 168 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 𝑚 )  =  ( 2 ↑ 𝑚 ) ) | 
						
							| 170 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 171 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 172 |  | negsub | ⊢ ( ( 1  ∈  ℂ  ∧  ( ℜ ‘ 𝑆 )  ∈  ℂ )  →  ( 1  +  - ( ℜ ‘ 𝑆 ) )  =  ( 1  −  ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 173 | 170 171 172 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 1  +  - ( ℜ ‘ 𝑆 ) )  =  ( 1  −  ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 174 | 173 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  =  ( 1  +  - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 175 | 169 174 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑𝑐 𝑚 ) ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  =  ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1  +  - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 176 | 164 166 175 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ·  𝑚 ) )  =  ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1  +  - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 177 | 58 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 1  −  ( ℜ ‘ 𝑆 ) )  ∈  ℝ ) | 
						
							| 178 | 165 177 162 | cxpmuld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑𝑐 ( ( 1  −  ( ℜ ‘ 𝑆 ) )  ·  𝑚 ) )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 ) ) | 
						
							| 179 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 180 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 181 | 179 180 | mpan | ⊢ ( 𝑚  ∈  ℕ0  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 182 | 181 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 183 | 182 | nncnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 184 | 182 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑ 𝑚 )  ≠  0 ) | 
						
							| 185 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 186 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  - ( ℜ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 187 | 183 184 185 186 | cxpaddd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑ 𝑚 ) ↑𝑐 ( 1  +  - ( ℜ ‘ 𝑆 ) ) )  =  ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 188 | 176 178 187 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 )  =  ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 189 |  | cxpexp | ⊢ ( ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) )  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) | 
						
							| 190 | 61 189 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑𝑐 𝑚 )  =  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 ) ) | 
						
							| 191 | 183 | cxp1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑ 𝑚 ) ↑𝑐 1 )  =  ( 2 ↑ 𝑚 ) ) | 
						
							| 192 | 191 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( 2 ↑ 𝑚 ) ↑𝑐 1 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) )  =  ( ( 2 ↑ 𝑚 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 193 | 188 190 192 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑚 )  =  ( ( 2 ↑ 𝑚 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 194 | 179 167 180 | sylancr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 2 ↑ 𝑚 )  ∈  ℕ ) | 
						
							| 195 |  | oveq1 | ⊢ ( 𝑛  =  ( 2 ↑ 𝑚 )  →  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) )  =  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 196 |  | ovex | ⊢ ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) )  ∈  V | 
						
							| 197 | 195 7 196 | fvmpt | ⊢ ( ( 2 ↑ 𝑚 )  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) )  =  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 198 | 194 197 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) )  =  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) | 
						
							| 199 | 198 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 2 ↑ 𝑚 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) )  =  ( ( 2 ↑ 𝑚 )  ·  ( ( 2 ↑ 𝑚 ) ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ) | 
						
							| 200 | 193 91 199 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) ‘ 𝑚 )  =  ( ( 2 ↑ 𝑚 )  ·  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) ‘ ( 2 ↑ 𝑚 ) ) ) ) | 
						
							| 201 | 100 102 157 200 | climcnds | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) )  ∈  dom   ⇝   ↔  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 2 ↑𝑐 ( 1  −  ( ℜ ‘ 𝑆 ) ) ) ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 202 | 96 201 | mpbird | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑𝑐 - ( ℜ ‘ 𝑆 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 203 | 4 5 52 54 202 | abscvgcvg | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  ∈  dom   ⇝  ) |