Metamath Proof Explorer


Theorem cxpmuld

Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
rpcxpcld.2 ( 𝜑𝐵 ∈ ℝ )
cxpmuld.4 ( 𝜑𝐶 ∈ ℂ )
Assertion cxpmuld ( 𝜑 → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑𝑐 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 rpcxpcld.2 ( 𝜑𝐵 ∈ ℝ )
3 cxpmuld.4 ( 𝜑𝐶 ∈ ℂ )
4 cxpmul ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑𝑐 𝐶 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴𝑐 𝐵 ) ↑𝑐 𝐶 ) )