Metamath Proof Explorer


Theorem cxpmuld

Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φA+
rpcxpcld.2 φB
cxpmuld.4 φC
Assertion cxpmuld φABC=ABC

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φA+
2 rpcxpcld.2 φB
3 cxpmuld.4 φC
4 cxpmul A+BCABC=ABC
5 1 2 3 4 syl3anc φABC=ABC