| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elnn0 | 
							⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 )  | 
						
						
							| 4 | 
							
								
							 | 
							0cxp | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 0 ↑𝑐 𝐵 )  =  0 )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							syl2anc | 
							⊢ ( 𝐵  ∈  ℕ  →  ( 0 ↑𝑐 𝐵 )  =  0 )  | 
						
						
							| 6 | 
							
								
							 | 
							0exp | 
							⊢ ( 𝐵  ∈  ℕ  →  ( 0 ↑ 𝐵 )  =  0 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqtr4d | 
							⊢ ( 𝐵  ∈  ℕ  →  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑ 𝐵 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							0cn | 
							⊢ 0  ∈  ℂ  | 
						
						
							| 9 | 
							
								
							 | 
							cxpval | 
							⊢ ( ( 0  ∈  ℂ  ∧  0  ∈  ℂ )  →  ( 0 ↑𝑐 0 )  =  if ( 0  =  0 ,  if ( 0  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 0  ·  ( log ‘ 0 ) ) ) ) )  | 
						
						
							| 10 | 
							
								8 8 9
							 | 
							mp2an | 
							⊢ ( 0 ↑𝑐 0 )  =  if ( 0  =  0 ,  if ( 0  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 0  ·  ( log ‘ 0 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ 0  =  0  | 
						
						
							| 12 | 
							
								11
							 | 
							iftruei | 
							⊢ if ( 0  =  0 ,  if ( 0  =  0 ,  1 ,  0 ) ,  ( exp ‘ ( 0  ·  ( log ‘ 0 ) ) ) )  =  if ( 0  =  0 ,  1 ,  0 )  | 
						
						
							| 13 | 
							
								11
							 | 
							iftruei | 
							⊢ if ( 0  =  0 ,  1 ,  0 )  =  1  | 
						
						
							| 14 | 
							
								10 12 13
							 | 
							3eqtri | 
							⊢ ( 0 ↑𝑐 0 )  =  1  | 
						
						
							| 15 | 
							
								
							 | 
							0exp0e1 | 
							⊢ ( 0 ↑ 0 )  =  1  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtr4i | 
							⊢ ( 0 ↑𝑐 0 )  =  ( 0 ↑ 0 )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  0  →  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑𝑐 0 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝐵  =  0  →  ( 0 ↑ 𝐵 )  =  ( 0 ↑ 0 ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3eqtr4a | 
							⊢ ( 𝐵  =  0  →  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑ 𝐵 ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							jaoi | 
							⊢ ( ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 )  →  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑ 𝐵 ) )  | 
						
						
							| 21 | 
							
								1 20
							 | 
							sylbi | 
							⊢ ( 𝐵  ∈  ℕ0  →  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑ 𝐵 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  0  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 0 ↑𝑐 𝐵 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  0  →  ( 𝐴 ↑ 𝐵 )  =  ( 0 ↑ 𝐵 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeq12d | 
							⊢ ( 𝐴  =  0  →  ( ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 )  ↔  ( 0 ↑𝑐 𝐵 )  =  ( 0 ↑ 𝐵 ) ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							syl5ibrcom | 
							⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐴  =  0  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  =  0  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imp | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℤ )  | 
						
						
							| 29 | 
							
								
							 | 
							cxpexpz | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3expa | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							sylan2 | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							an32s | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ0 )  ∧  𝐴  ≠  0 )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  | 
						
						
							| 33 | 
							
								27 32
							 | 
							pm2.61dane | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑𝑐 𝐵 )  =  ( 𝐴 ↑ 𝐵 ) )  |