Metamath Proof Explorer


Theorem logcxp

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion logcxp ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
2 1 adantr ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ )
3 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
4 3 adantr ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → 𝐴 ≠ 0 )
5 simpr ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
6 5 recnd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ )
7 cxpef ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) )
8 2 4 6 7 syl3anc ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( 𝐴𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) )
9 8 fveq2d ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) )
10 id ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ )
11 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
12 remulcl ( ( 𝐵 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ )
13 10 11 12 syl2anr ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ )
14 13 relogefd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) )
15 9 14 eqtrd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) )