Metamath Proof Explorer


Theorem logcxp

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion logcxp A+BlogAB=BlogA

Proof

Step Hyp Ref Expression
1 rpcn A+A
2 1 adantr A+BA
3 rpne0 A+A0
4 3 adantr A+BA0
5 simpr A+BB
6 5 recnd A+BB
7 cxpef AA0BAB=eBlogA
8 2 4 6 7 syl3anc A+BAB=eBlogA
9 8 fveq2d A+BlogAB=logeBlogA
10 id BB
11 relogcl A+logA
12 remulcl BlogABlogA
13 10 11 12 syl2anr A+BBlogA
14 13 relogefd A+BlogeBlogA=BlogA
15 9 14 eqtrd A+BlogAB=BlogA