| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zetacvg.1 |
|- ( ph -> S e. CC ) |
| 2 |
|
zetacvg.2 |
|- ( ph -> 1 < ( Re ` S ) ) |
| 3 |
|
zetacvg.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( k ^c -u S ) ) |
| 4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 5 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 6 |
|
oveq1 |
|- ( n = k -> ( n ^c -u ( Re ` S ) ) = ( k ^c -u ( Re ` S ) ) ) |
| 7 |
|
eqid |
|- ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) = ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) |
| 8 |
|
ovex |
|- ( k ^c -u ( Re ` S ) ) e. _V |
| 9 |
6 7 8
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( k ^c -u ( Re ` S ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( k ^c -u ( Re ` S ) ) ) |
| 11 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. CC ) |
| 13 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
| 15 |
1
|
negcld |
|- ( ph -> -u S e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ k e. NN ) -> -u S e. CC ) |
| 17 |
12 14 16
|
cxpefd |
|- ( ( ph /\ k e. NN ) -> ( k ^c -u S ) = ( exp ` ( -u S x. ( log ` k ) ) ) ) |
| 18 |
3 17
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( exp ` ( -u S x. ( log ` k ) ) ) ) |
| 19 |
18
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( F ` k ) ) = ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) ) |
| 20 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 21 |
20
|
relogcld |
|- ( k e. NN -> ( log ` k ) e. RR ) |
| 22 |
21
|
recnd |
|- ( k e. NN -> ( log ` k ) e. CC ) |
| 23 |
|
mulcl |
|- ( ( -u S e. CC /\ ( log ` k ) e. CC ) -> ( -u S x. ( log ` k ) ) e. CC ) |
| 24 |
15 22 23
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u S x. ( log ` k ) ) e. CC ) |
| 25 |
|
absef |
|- ( ( -u S x. ( log ` k ) ) e. CC -> ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) ) |
| 27 |
|
remul |
|- ( ( -u S e. CC /\ ( log ` k ) e. CC ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) ) |
| 28 |
15 22 27
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) ) |
| 29 |
1
|
renegd |
|- ( ph -> ( Re ` -u S ) = -u ( Re ` S ) ) |
| 30 |
21
|
rered |
|- ( k e. NN -> ( Re ` ( log ` k ) ) = ( log ` k ) ) |
| 31 |
29 30
|
oveqan12d |
|- ( ( ph /\ k e. NN ) -> ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) |
| 32 |
21
|
reim0d |
|- ( k e. NN -> ( Im ` ( log ` k ) ) = 0 ) |
| 33 |
32
|
oveq2d |
|- ( k e. NN -> ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) = ( ( Im ` -u S ) x. 0 ) ) |
| 34 |
|
imcl |
|- ( -u S e. CC -> ( Im ` -u S ) e. RR ) |
| 35 |
34
|
recnd |
|- ( -u S e. CC -> ( Im ` -u S ) e. CC ) |
| 36 |
15 35
|
syl |
|- ( ph -> ( Im ` -u S ) e. CC ) |
| 37 |
36
|
mul01d |
|- ( ph -> ( ( Im ` -u S ) x. 0 ) = 0 ) |
| 38 |
33 37
|
sylan9eqr |
|- ( ( ph /\ k e. NN ) -> ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) = 0 ) |
| 39 |
31 38
|
oveq12d |
|- ( ( ph /\ k e. NN ) -> ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) = ( ( -u ( Re ` S ) x. ( log ` k ) ) - 0 ) ) |
| 40 |
1
|
recld |
|- ( ph -> ( Re ` S ) e. RR ) |
| 41 |
40
|
renegcld |
|- ( ph -> -u ( Re ` S ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ph -> -u ( Re ` S ) e. CC ) |
| 43 |
|
mulcl |
|- ( ( -u ( Re ` S ) e. CC /\ ( log ` k ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. CC ) |
| 44 |
42 22 43
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. CC ) |
| 45 |
44
|
subid1d |
|- ( ( ph /\ k e. NN ) -> ( ( -u ( Re ` S ) x. ( log ` k ) ) - 0 ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) |
| 46 |
28 39 45
|
3eqtrd |
|- ( ( ph /\ k e. NN ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) |
| 47 |
46
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) |
| 48 |
42
|
adantr |
|- ( ( ph /\ k e. NN ) -> -u ( Re ` S ) e. CC ) |
| 49 |
12 14 48
|
cxpefd |
|- ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) |
| 50 |
47 49
|
eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) = ( k ^c -u ( Re ` S ) ) ) |
| 51 |
19 26 50
|
3eqtrd |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( F ` k ) ) = ( k ^c -u ( Re ` S ) ) ) |
| 52 |
10 51
|
eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
| 53 |
12 16
|
cxpcld |
|- ( ( ph /\ k e. NN ) -> ( k ^c -u S ) e. CC ) |
| 54 |
3 53
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 55 |
|
2rp |
|- 2 e. RR+ |
| 56 |
|
1re |
|- 1 e. RR |
| 57 |
|
resubcl |
|- ( ( 1 e. RR /\ ( Re ` S ) e. RR ) -> ( 1 - ( Re ` S ) ) e. RR ) |
| 58 |
56 40 57
|
sylancr |
|- ( ph -> ( 1 - ( Re ` S ) ) e. RR ) |
| 59 |
|
rpcxpcl |
|- ( ( 2 e. RR+ /\ ( 1 - ( Re ` S ) ) e. RR ) -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR+ ) |
| 60 |
55 58 59
|
sylancr |
|- ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR+ ) |
| 61 |
60
|
rpcnd |
|- ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. CC ) |
| 62 |
|
recl |
|- ( S e. CC -> ( Re ` S ) e. RR ) |
| 63 |
62
|
recnd |
|- ( S e. CC -> ( Re ` S ) e. CC ) |
| 64 |
1 63
|
syl |
|- ( ph -> ( Re ` S ) e. CC ) |
| 65 |
64
|
addlidd |
|- ( ph -> ( 0 + ( Re ` S ) ) = ( Re ` S ) ) |
| 66 |
2 65
|
breqtrrd |
|- ( ph -> 1 < ( 0 + ( Re ` S ) ) ) |
| 67 |
|
0re |
|- 0 e. RR |
| 68 |
|
ltsubadd |
|- ( ( 1 e. RR /\ ( Re ` S ) e. RR /\ 0 e. RR ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) |
| 69 |
56 67 68
|
mp3an13 |
|- ( ( Re ` S ) e. RR -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) |
| 70 |
40 69
|
syl |
|- ( ph -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) |
| 71 |
66 70
|
mpbird |
|- ( ph -> ( 1 - ( Re ` S ) ) < 0 ) |
| 72 |
|
2re |
|- 2 e. RR |
| 73 |
|
1lt2 |
|- 1 < 2 |
| 74 |
|
cxplt |
|- ( ( ( 2 e. RR /\ 1 < 2 ) /\ ( ( 1 - ( Re ` S ) ) e. RR /\ 0 e. RR ) ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) |
| 75 |
72 73 74
|
mpanl12 |
|- ( ( ( 1 - ( Re ` S ) ) e. RR /\ 0 e. RR ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) |
| 76 |
58 67 75
|
sylancl |
|- ( ph -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) |
| 77 |
71 76
|
mpbid |
|- ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) |
| 78 |
60
|
rprege0d |
|- ( ph -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR /\ 0 <_ ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) |
| 79 |
|
absid |
|- ( ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR /\ 0 <_ ( 2 ^c ( 1 - ( Re ` S ) ) ) ) -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) = ( 2 ^c ( 1 - ( Re ` S ) ) ) ) |
| 80 |
78 79
|
syl |
|- ( ph -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) = ( 2 ^c ( 1 - ( Re ` S ) ) ) ) |
| 81 |
|
2cn |
|- 2 e. CC |
| 82 |
|
cxp0 |
|- ( 2 e. CC -> ( 2 ^c 0 ) = 1 ) |
| 83 |
81 82
|
ax-mp |
|- ( 2 ^c 0 ) = 1 |
| 84 |
83
|
eqcomi |
|- 1 = ( 2 ^c 0 ) |
| 85 |
84
|
a1i |
|- ( ph -> 1 = ( 2 ^c 0 ) ) |
| 86 |
77 80 85
|
3brtr4d |
|- ( ph -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) < 1 ) |
| 87 |
|
oveq2 |
|- ( n = m -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) |
| 88 |
|
eqid |
|- ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) = ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) |
| 89 |
|
ovex |
|- ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) e. _V |
| 90 |
87 88 89
|
fvmpt |
|- ( m e. NN0 -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) |
| 91 |
90
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) |
| 92 |
61 86 91
|
geolim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) ) |
| 93 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. _V |
| 94 |
|
ovex |
|- ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) e. _V |
| 95 |
93 94
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) |
| 96 |
92 95
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) |
| 97 |
|
rpcxpcl |
|- ( ( k e. RR+ /\ -u ( Re ` S ) e. RR ) -> ( k ^c -u ( Re ` S ) ) e. RR+ ) |
| 98 |
20 41 97
|
syl2anr |
|- ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) e. RR+ ) |
| 99 |
98
|
rpred |
|- ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) e. RR ) |
| 100 |
10 99
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) e. RR ) |
| 101 |
98
|
rpge0d |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( k ^c -u ( Re ` S ) ) ) |
| 102 |
101 10
|
breqtrrd |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) ) |
| 103 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 104 |
103
|
lep1d |
|- ( k e. NN -> k <_ ( k + 1 ) ) |
| 105 |
20
|
reeflogd |
|- ( k e. NN -> ( exp ` ( log ` k ) ) = k ) |
| 106 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 107 |
106
|
nnrpd |
|- ( k e. NN -> ( k + 1 ) e. RR+ ) |
| 108 |
107
|
reeflogd |
|- ( k e. NN -> ( exp ` ( log ` ( k + 1 ) ) ) = ( k + 1 ) ) |
| 109 |
104 105 108
|
3brtr4d |
|- ( k e. NN -> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) |
| 110 |
107
|
relogcld |
|- ( k e. NN -> ( log ` ( k + 1 ) ) e. RR ) |
| 111 |
|
efle |
|- ( ( ( log ` k ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) ) |
| 112 |
21 110 111
|
syl2anc |
|- ( k e. NN -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) ) |
| 113 |
109 112
|
mpbird |
|- ( k e. NN -> ( log ` k ) <_ ( log ` ( k + 1 ) ) ) |
| 114 |
113
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( log ` k ) <_ ( log ` ( k + 1 ) ) ) |
| 115 |
21
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( log ` k ) e. RR ) |
| 116 |
106
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 117 |
116
|
nnrpd |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR+ ) |
| 118 |
117
|
relogcld |
|- ( ( ph /\ k e. NN ) -> ( log ` ( k + 1 ) ) e. RR ) |
| 119 |
40
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( Re ` S ) e. RR ) |
| 120 |
67
|
a1i |
|- ( ph -> 0 e. RR ) |
| 121 |
56
|
a1i |
|- ( ph -> 1 e. RR ) |
| 122 |
|
0lt1 |
|- 0 < 1 |
| 123 |
122
|
a1i |
|- ( ph -> 0 < 1 ) |
| 124 |
120 121 40 123 2
|
lttrd |
|- ( ph -> 0 < ( Re ` S ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ k e. NN ) -> 0 < ( Re ` S ) ) |
| 126 |
|
lemul2 |
|- ( ( ( log ` k ) e. RR /\ ( log ` ( k + 1 ) ) e. RR /\ ( ( Re ` S ) e. RR /\ 0 < ( Re ` S ) ) ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) |
| 127 |
115 118 119 125 126
|
syl112anc |
|- ( ( ph /\ k e. NN ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) |
| 128 |
114 127
|
mpbid |
|- ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) |
| 129 |
|
remulcl |
|- ( ( ( Re ` S ) e. RR /\ ( log ` k ) e. RR ) -> ( ( Re ` S ) x. ( log ` k ) ) e. RR ) |
| 130 |
40 21 129
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` k ) ) e. RR ) |
| 131 |
|
remulcl |
|- ( ( ( Re ` S ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) |
| 132 |
40 110 131
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) |
| 133 |
130 132
|
lenegd |
|- ( ( ph /\ k e. NN ) -> ( ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <-> -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ -u ( ( Re ` S ) x. ( log ` k ) ) ) ) |
| 134 |
128 133
|
mpbid |
|- ( ( ph /\ k e. NN ) -> -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ -u ( ( Re ` S ) x. ( log ` k ) ) ) |
| 135 |
110
|
recnd |
|- ( k e. NN -> ( log ` ( k + 1 ) ) e. CC ) |
| 136 |
|
mulneg1 |
|- ( ( ( Re ` S ) e. CC /\ ( log ` ( k + 1 ) ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) = -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) |
| 137 |
64 135 136
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) = -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) |
| 138 |
|
mulneg1 |
|- ( ( ( Re ` S ) e. CC /\ ( log ` k ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` k ) ) = -u ( ( Re ` S ) x. ( log ` k ) ) ) |
| 139 |
64 22 138
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) = -u ( ( Re ` S ) x. ( log ` k ) ) ) |
| 140 |
134 137 139
|
3brtr4d |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) ) |
| 141 |
|
remulcl |
|- ( ( -u ( Re ` S ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) |
| 142 |
41 110 141
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) |
| 143 |
|
remulcl |
|- ( ( -u ( Re ` S ) e. RR /\ ( log ` k ) e. RR ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) |
| 144 |
41 21 143
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) |
| 145 |
|
efle |
|- ( ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR /\ ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) -> ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) <-> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) ) |
| 146 |
142 144 145
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) <-> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) ) |
| 147 |
140 146
|
mpbid |
|- ( ( ph /\ k e. NN ) -> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) |
| 148 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n ^c -u ( Re ` S ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) |
| 149 |
|
ovex |
|- ( ( k + 1 ) ^c -u ( Re ` S ) ) e. _V |
| 150 |
148 7 149
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) |
| 151 |
116 150
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) |
| 152 |
116
|
nncnd |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. CC ) |
| 153 |
116
|
nnne0d |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) =/= 0 ) |
| 154 |
152 153 48
|
cxpefd |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) ^c -u ( Re ` S ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) |
| 155 |
151 154
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) |
| 156 |
10 49
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) |
| 157 |
147 155 156
|
3brtr4d |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) <_ ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) ) |
| 158 |
58
|
recnd |
|- ( ph -> ( 1 - ( Re ` S ) ) e. CC ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) e. CC ) |
| 160 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
| 161 |
160
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> m e. RR ) |
| 162 |
161
|
recnd |
|- ( ( ph /\ m e. NN0 ) -> m e. CC ) |
| 163 |
159 162
|
mulcomd |
|- ( ( ph /\ m e. NN0 ) -> ( ( 1 - ( Re ` S ) ) x. m ) = ( m x. ( 1 - ( Re ` S ) ) ) ) |
| 164 |
163
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( 2 ^c ( m x. ( 1 - ( Re ` S ) ) ) ) ) |
| 165 |
55
|
a1i |
|- ( ( ph /\ m e. NN0 ) -> 2 e. RR+ ) |
| 166 |
165 161 159
|
cxpmuld |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( m x. ( 1 - ( Re ` S ) ) ) ) = ( ( 2 ^c m ) ^c ( 1 - ( Re ` S ) ) ) ) |
| 167 |
|
simpr |
|- ( ( ph /\ m e. NN0 ) -> m e. NN0 ) |
| 168 |
|
cxpexp |
|- ( ( 2 e. CC /\ m e. NN0 ) -> ( 2 ^c m ) = ( 2 ^ m ) ) |
| 169 |
81 167 168
|
sylancr |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^c m ) = ( 2 ^ m ) ) |
| 170 |
|
ax-1cn |
|- 1 e. CC |
| 171 |
64
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> ( Re ` S ) e. CC ) |
| 172 |
|
negsub |
|- ( ( 1 e. CC /\ ( Re ` S ) e. CC ) -> ( 1 + -u ( Re ` S ) ) = ( 1 - ( Re ` S ) ) ) |
| 173 |
170 171 172
|
sylancr |
|- ( ( ph /\ m e. NN0 ) -> ( 1 + -u ( Re ` S ) ) = ( 1 - ( Re ` S ) ) ) |
| 174 |
173
|
eqcomd |
|- ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) = ( 1 + -u ( Re ` S ) ) ) |
| 175 |
169 174
|
oveq12d |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c m ) ^c ( 1 - ( Re ` S ) ) ) = ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) ) |
| 176 |
164 166 175
|
3eqtrd |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) ) |
| 177 |
58
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) e. RR ) |
| 178 |
165 177 162
|
cxpmuld |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) ) |
| 179 |
|
2nn |
|- 2 e. NN |
| 180 |
|
nnexpcl |
|- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
| 181 |
179 180
|
mpan |
|- ( m e. NN0 -> ( 2 ^ m ) e. NN ) |
| 182 |
181
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
| 183 |
182
|
nncnd |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. CC ) |
| 184 |
182
|
nnne0d |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) =/= 0 ) |
| 185 |
|
1cnd |
|- ( ( ph /\ m e. NN0 ) -> 1 e. CC ) |
| 186 |
42
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> -u ( Re ` S ) e. CC ) |
| 187 |
183 184 185 186
|
cxpaddd |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) = ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) |
| 188 |
176 178 187
|
3eqtr3d |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) |
| 189 |
|
cxpexp |
|- ( ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. CC /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) |
| 190 |
61 189
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) |
| 191 |
183
|
cxp1d |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) ^c 1 ) = ( 2 ^ m ) ) |
| 192 |
191
|
oveq1d |
|- ( ( ph /\ m e. NN0 ) -> ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) |
| 193 |
188 190 192
|
3eqtr3d |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) |
| 194 |
179 167 180
|
sylancr |
|- ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
| 195 |
|
oveq1 |
|- ( n = ( 2 ^ m ) -> ( n ^c -u ( Re ` S ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) |
| 196 |
|
ovex |
|- ( ( 2 ^ m ) ^c -u ( Re ` S ) ) e. _V |
| 197 |
195 7 196
|
fvmpt |
|- ( ( 2 ^ m ) e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) |
| 198 |
194 197
|
syl |
|- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) |
| 199 |
198
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) x. ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) |
| 200 |
193 91 199
|
3eqtr4d |
|- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^ m ) x. ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) ) ) |
| 201 |
100 102 157 200
|
climcnds |
|- ( ph -> ( seq 1 ( + , ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) ) |
| 202 |
96 201
|
mpbird |
|- ( ph -> seq 1 ( + , ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ) e. dom ~~> ) |
| 203 |
4 5 52 54 202
|
abscvgcvg |
|- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |