| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zetacvg.1 |  |-  ( ph -> S e. CC ) | 
						
							| 2 |  | zetacvg.2 |  |-  ( ph -> 1 < ( Re ` S ) ) | 
						
							| 3 |  | zetacvg.3 |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( k ^c -u S ) ) | 
						
							| 4 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 5 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 6 |  | oveq1 |  |-  ( n = k -> ( n ^c -u ( Re ` S ) ) = ( k ^c -u ( Re ` S ) ) ) | 
						
							| 7 |  | eqid |  |-  ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) = ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) | 
						
							| 8 |  | ovex |  |-  ( k ^c -u ( Re ` S ) ) e. _V | 
						
							| 9 | 6 7 8 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( k ^c -u ( Re ` S ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( k ^c -u ( Re ` S ) ) ) | 
						
							| 11 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ k e. NN ) -> k e. CC ) | 
						
							| 13 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ k e. NN ) -> k =/= 0 ) | 
						
							| 15 | 1 | negcld |  |-  ( ph -> -u S e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ k e. NN ) -> -u S e. CC ) | 
						
							| 17 | 12 14 16 | cxpefd |  |-  ( ( ph /\ k e. NN ) -> ( k ^c -u S ) = ( exp ` ( -u S x. ( log ` k ) ) ) ) | 
						
							| 18 | 3 17 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( exp ` ( -u S x. ( log ` k ) ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( abs ` ( F ` k ) ) = ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) ) | 
						
							| 20 |  | nnrp |  |-  ( k e. NN -> k e. RR+ ) | 
						
							| 21 | 20 | relogcld |  |-  ( k e. NN -> ( log ` k ) e. RR ) | 
						
							| 22 | 21 | recnd |  |-  ( k e. NN -> ( log ` k ) e. CC ) | 
						
							| 23 |  | mulcl |  |-  ( ( -u S e. CC /\ ( log ` k ) e. CC ) -> ( -u S x. ( log ` k ) ) e. CC ) | 
						
							| 24 | 15 22 23 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u S x. ( log ` k ) ) e. CC ) | 
						
							| 25 |  | absef |  |-  ( ( -u S x. ( log ` k ) ) e. CC -> ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ k e. NN ) -> ( abs ` ( exp ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) ) | 
						
							| 27 |  | remul |  |-  ( ( -u S e. CC /\ ( log ` k ) e. CC ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) ) | 
						
							| 28 | 15 22 27 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) ) | 
						
							| 29 | 1 | renegd |  |-  ( ph -> ( Re ` -u S ) = -u ( Re ` S ) ) | 
						
							| 30 | 21 | rered |  |-  ( k e. NN -> ( Re ` ( log ` k ) ) = ( log ` k ) ) | 
						
							| 31 | 29 30 | oveqan12d |  |-  ( ( ph /\ k e. NN ) -> ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 32 | 21 | reim0d |  |-  ( k e. NN -> ( Im ` ( log ` k ) ) = 0 ) | 
						
							| 33 | 32 | oveq2d |  |-  ( k e. NN -> ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) = ( ( Im ` -u S ) x. 0 ) ) | 
						
							| 34 |  | imcl |  |-  ( -u S e. CC -> ( Im ` -u S ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( -u S e. CC -> ( Im ` -u S ) e. CC ) | 
						
							| 36 | 15 35 | syl |  |-  ( ph -> ( Im ` -u S ) e. CC ) | 
						
							| 37 | 36 | mul01d |  |-  ( ph -> ( ( Im ` -u S ) x. 0 ) = 0 ) | 
						
							| 38 | 33 37 | sylan9eqr |  |-  ( ( ph /\ k e. NN ) -> ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) = 0 ) | 
						
							| 39 | 31 38 | oveq12d |  |-  ( ( ph /\ k e. NN ) -> ( ( ( Re ` -u S ) x. ( Re ` ( log ` k ) ) ) - ( ( Im ` -u S ) x. ( Im ` ( log ` k ) ) ) ) = ( ( -u ( Re ` S ) x. ( log ` k ) ) - 0 ) ) | 
						
							| 40 | 1 | recld |  |-  ( ph -> ( Re ` S ) e. RR ) | 
						
							| 41 | 40 | renegcld |  |-  ( ph -> -u ( Re ` S ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ph -> -u ( Re ` S ) e. CC ) | 
						
							| 43 |  | mulcl |  |-  ( ( -u ( Re ` S ) e. CC /\ ( log ` k ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. CC ) | 
						
							| 44 | 42 22 43 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. CC ) | 
						
							| 45 | 44 | subid1d |  |-  ( ( ph /\ k e. NN ) -> ( ( -u ( Re ` S ) x. ( log ` k ) ) - 0 ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 46 | 28 39 45 | 3eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( Re ` ( -u S x. ( log ` k ) ) ) = ( -u ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) | 
						
							| 48 | 42 | adantr |  |-  ( ( ph /\ k e. NN ) -> -u ( Re ` S ) e. CC ) | 
						
							| 49 | 12 14 48 | cxpefd |  |-  ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) | 
						
							| 50 | 47 49 | eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( Re ` ( -u S x. ( log ` k ) ) ) ) = ( k ^c -u ( Re ` S ) ) ) | 
						
							| 51 | 19 26 50 | 3eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( abs ` ( F ` k ) ) = ( k ^c -u ( Re ` S ) ) ) | 
						
							| 52 | 10 51 | eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) | 
						
							| 53 | 12 16 | cxpcld |  |-  ( ( ph /\ k e. NN ) -> ( k ^c -u S ) e. CC ) | 
						
							| 54 | 3 53 | eqeltrd |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) | 
						
							| 55 |  | 2rp |  |-  2 e. RR+ | 
						
							| 56 |  | 1re |  |-  1 e. RR | 
						
							| 57 |  | resubcl |  |-  ( ( 1 e. RR /\ ( Re ` S ) e. RR ) -> ( 1 - ( Re ` S ) ) e. RR ) | 
						
							| 58 | 56 40 57 | sylancr |  |-  ( ph -> ( 1 - ( Re ` S ) ) e. RR ) | 
						
							| 59 |  | rpcxpcl |  |-  ( ( 2 e. RR+ /\ ( 1 - ( Re ` S ) ) e. RR ) -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR+ ) | 
						
							| 60 | 55 58 59 | sylancr |  |-  ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR+ ) | 
						
							| 61 | 60 | rpcnd |  |-  ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) e. CC ) | 
						
							| 62 |  | recl |  |-  ( S e. CC -> ( Re ` S ) e. RR ) | 
						
							| 63 | 62 | recnd |  |-  ( S e. CC -> ( Re ` S ) e. CC ) | 
						
							| 64 | 1 63 | syl |  |-  ( ph -> ( Re ` S ) e. CC ) | 
						
							| 65 | 64 | addlidd |  |-  ( ph -> ( 0 + ( Re ` S ) ) = ( Re ` S ) ) | 
						
							| 66 | 2 65 | breqtrrd |  |-  ( ph -> 1 < ( 0 + ( Re ` S ) ) ) | 
						
							| 67 |  | 0re |  |-  0 e. RR | 
						
							| 68 |  | ltsubadd |  |-  ( ( 1 e. RR /\ ( Re ` S ) e. RR /\ 0 e. RR ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) | 
						
							| 69 | 56 67 68 | mp3an13 |  |-  ( ( Re ` S ) e. RR -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) | 
						
							| 70 | 40 69 | syl |  |-  ( ph -> ( ( 1 - ( Re ` S ) ) < 0 <-> 1 < ( 0 + ( Re ` S ) ) ) ) | 
						
							| 71 | 66 70 | mpbird |  |-  ( ph -> ( 1 - ( Re ` S ) ) < 0 ) | 
						
							| 72 |  | 2re |  |-  2 e. RR | 
						
							| 73 |  | 1lt2 |  |-  1 < 2 | 
						
							| 74 |  | cxplt |  |-  ( ( ( 2 e. RR /\ 1 < 2 ) /\ ( ( 1 - ( Re ` S ) ) e. RR /\ 0 e. RR ) ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) | 
						
							| 75 | 72 73 74 | mpanl12 |  |-  ( ( ( 1 - ( Re ` S ) ) e. RR /\ 0 e. RR ) -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) | 
						
							| 76 | 58 67 75 | sylancl |  |-  ( ph -> ( ( 1 - ( Re ` S ) ) < 0 <-> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) ) | 
						
							| 77 | 71 76 | mpbid |  |-  ( ph -> ( 2 ^c ( 1 - ( Re ` S ) ) ) < ( 2 ^c 0 ) ) | 
						
							| 78 | 60 | rprege0d |  |-  ( ph -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR /\ 0 <_ ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) | 
						
							| 79 |  | absid |  |-  ( ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. RR /\ 0 <_ ( 2 ^c ( 1 - ( Re ` S ) ) ) ) -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) = ( 2 ^c ( 1 - ( Re ` S ) ) ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) = ( 2 ^c ( 1 - ( Re ` S ) ) ) ) | 
						
							| 81 |  | 2cn |  |-  2 e. CC | 
						
							| 82 |  | cxp0 |  |-  ( 2 e. CC -> ( 2 ^c 0 ) = 1 ) | 
						
							| 83 | 81 82 | ax-mp |  |-  ( 2 ^c 0 ) = 1 | 
						
							| 84 | 83 | eqcomi |  |-  1 = ( 2 ^c 0 ) | 
						
							| 85 | 84 | a1i |  |-  ( ph -> 1 = ( 2 ^c 0 ) ) | 
						
							| 86 | 77 80 85 | 3brtr4d |  |-  ( ph -> ( abs ` ( 2 ^c ( 1 - ( Re ` S ) ) ) ) < 1 ) | 
						
							| 87 |  | oveq2 |  |-  ( n = m -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) | 
						
							| 88 |  | eqid |  |-  ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) = ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) | 
						
							| 89 |  | ovex |  |-  ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) e. _V | 
						
							| 90 | 87 88 89 | fvmpt |  |-  ( m e. NN0 -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) | 
						
							| 92 | 61 86 91 | geolim |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) ) | 
						
							| 93 |  | seqex |  |-  seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. _V | 
						
							| 94 |  | ovex |  |-  ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) e. _V | 
						
							| 95 | 93 94 | breldm |  |-  ( seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( 2 ^c ( 1 - ( Re ` S ) ) ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) | 
						
							| 96 | 92 95 | syl |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) | 
						
							| 97 |  | rpcxpcl |  |-  ( ( k e. RR+ /\ -u ( Re ` S ) e. RR ) -> ( k ^c -u ( Re ` S ) ) e. RR+ ) | 
						
							| 98 | 20 41 97 | syl2anr |  |-  ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) e. RR+ ) | 
						
							| 99 | 98 | rpred |  |-  ( ( ph /\ k e. NN ) -> ( k ^c -u ( Re ` S ) ) e. RR ) | 
						
							| 100 | 10 99 | eqeltrd |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) e. RR ) | 
						
							| 101 | 98 | rpge0d |  |-  ( ( ph /\ k e. NN ) -> 0 <_ ( k ^c -u ( Re ` S ) ) ) | 
						
							| 102 | 101 10 | breqtrrd |  |-  ( ( ph /\ k e. NN ) -> 0 <_ ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) ) | 
						
							| 103 |  | nnre |  |-  ( k e. NN -> k e. RR ) | 
						
							| 104 | 103 | lep1d |  |-  ( k e. NN -> k <_ ( k + 1 ) ) | 
						
							| 105 | 20 | reeflogd |  |-  ( k e. NN -> ( exp ` ( log ` k ) ) = k ) | 
						
							| 106 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 107 | 106 | nnrpd |  |-  ( k e. NN -> ( k + 1 ) e. RR+ ) | 
						
							| 108 | 107 | reeflogd |  |-  ( k e. NN -> ( exp ` ( log ` ( k + 1 ) ) ) = ( k + 1 ) ) | 
						
							| 109 | 104 105 108 | 3brtr4d |  |-  ( k e. NN -> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) | 
						
							| 110 | 107 | relogcld |  |-  ( k e. NN -> ( log ` ( k + 1 ) ) e. RR ) | 
						
							| 111 |  | efle |  |-  ( ( ( log ` k ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 112 | 21 110 111 | syl2anc |  |-  ( k e. NN -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( exp ` ( log ` k ) ) <_ ( exp ` ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 113 | 109 112 | mpbird |  |-  ( k e. NN -> ( log ` k ) <_ ( log ` ( k + 1 ) ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( log ` k ) <_ ( log ` ( k + 1 ) ) ) | 
						
							| 115 | 21 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( log ` k ) e. RR ) | 
						
							| 116 | 106 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) | 
						
							| 117 | 116 | nnrpd |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR+ ) | 
						
							| 118 | 117 | relogcld |  |-  ( ( ph /\ k e. NN ) -> ( log ` ( k + 1 ) ) e. RR ) | 
						
							| 119 | 40 | adantr |  |-  ( ( ph /\ k e. NN ) -> ( Re ` S ) e. RR ) | 
						
							| 120 | 67 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 121 | 56 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 122 |  | 0lt1 |  |-  0 < 1 | 
						
							| 123 | 122 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 124 | 120 121 40 123 2 | lttrd |  |-  ( ph -> 0 < ( Re ` S ) ) | 
						
							| 125 | 124 | adantr |  |-  ( ( ph /\ k e. NN ) -> 0 < ( Re ` S ) ) | 
						
							| 126 |  | lemul2 |  |-  ( ( ( log ` k ) e. RR /\ ( log ` ( k + 1 ) ) e. RR /\ ( ( Re ` S ) e. RR /\ 0 < ( Re ` S ) ) ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 127 | 115 118 119 125 126 | syl112anc |  |-  ( ( ph /\ k e. NN ) -> ( ( log ` k ) <_ ( log ` ( k + 1 ) ) <-> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 128 | 114 127 | mpbid |  |-  ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) | 
						
							| 129 |  | remulcl |  |-  ( ( ( Re ` S ) e. RR /\ ( log ` k ) e. RR ) -> ( ( Re ` S ) x. ( log ` k ) ) e. RR ) | 
						
							| 130 | 40 21 129 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` k ) ) e. RR ) | 
						
							| 131 |  | remulcl |  |-  ( ( ( Re ` S ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) | 
						
							| 132 | 40 110 131 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) | 
						
							| 133 | 130 132 | lenegd |  |-  ( ( ph /\ k e. NN ) -> ( ( ( Re ` S ) x. ( log ` k ) ) <_ ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <-> -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ -u ( ( Re ` S ) x. ( log ` k ) ) ) ) | 
						
							| 134 | 128 133 | mpbid |  |-  ( ( ph /\ k e. NN ) -> -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ -u ( ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 135 | 110 | recnd |  |-  ( k e. NN -> ( log ` ( k + 1 ) ) e. CC ) | 
						
							| 136 |  | mulneg1 |  |-  ( ( ( Re ` S ) e. CC /\ ( log ` ( k + 1 ) ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) = -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) | 
						
							| 137 | 64 135 136 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) = -u ( ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) | 
						
							| 138 |  | mulneg1 |  |-  ( ( ( Re ` S ) e. CC /\ ( log ` k ) e. CC ) -> ( -u ( Re ` S ) x. ( log ` k ) ) = -u ( ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 139 | 64 22 138 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) = -u ( ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 140 | 134 137 139 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) ) | 
						
							| 141 |  | remulcl |  |-  ( ( -u ( Re ` S ) e. RR /\ ( log ` ( k + 1 ) ) e. RR ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) | 
						
							| 142 | 41 110 141 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR ) | 
						
							| 143 |  | remulcl |  |-  ( ( -u ( Re ` S ) e. RR /\ ( log ` k ) e. RR ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) | 
						
							| 144 | 41 21 143 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) | 
						
							| 145 |  | efle |  |-  ( ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) e. RR /\ ( -u ( Re ` S ) x. ( log ` k ) ) e. RR ) -> ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) <-> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) ) | 
						
							| 146 | 142 144 145 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) <_ ( -u ( Re ` S ) x. ( log ` k ) ) <-> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) ) | 
						
							| 147 | 140 146 | mpbid |  |-  ( ( ph /\ k e. NN ) -> ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) <_ ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) | 
						
							| 148 |  | oveq1 |  |-  ( n = ( k + 1 ) -> ( n ^c -u ( Re ` S ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) | 
						
							| 149 |  | ovex |  |-  ( ( k + 1 ) ^c -u ( Re ` S ) ) e. _V | 
						
							| 150 | 148 7 149 | fvmpt |  |-  ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) | 
						
							| 151 | 116 150 | syl |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( ( k + 1 ) ^c -u ( Re ` S ) ) ) | 
						
							| 152 | 116 | nncnd |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. CC ) | 
						
							| 153 | 116 | nnne0d |  |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) =/= 0 ) | 
						
							| 154 | 152 153 48 | cxpefd |  |-  ( ( ph /\ k e. NN ) -> ( ( k + 1 ) ^c -u ( Re ` S ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 155 | 151 154 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) = ( exp ` ( -u ( Re ` S ) x. ( log ` ( k + 1 ) ) ) ) ) | 
						
							| 156 | 10 49 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) = ( exp ` ( -u ( Re ` S ) x. ( log ` k ) ) ) ) | 
						
							| 157 | 147 155 156 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( k + 1 ) ) <_ ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` k ) ) | 
						
							| 158 | 58 | recnd |  |-  ( ph -> ( 1 - ( Re ` S ) ) e. CC ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) e. CC ) | 
						
							| 160 |  | nn0re |  |-  ( m e. NN0 -> m e. RR ) | 
						
							| 161 | 160 | adantl |  |-  ( ( ph /\ m e. NN0 ) -> m e. RR ) | 
						
							| 162 | 161 | recnd |  |-  ( ( ph /\ m e. NN0 ) -> m e. CC ) | 
						
							| 163 | 159 162 | mulcomd |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 1 - ( Re ` S ) ) x. m ) = ( m x. ( 1 - ( Re ` S ) ) ) ) | 
						
							| 164 | 163 | oveq2d |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( 2 ^c ( m x. ( 1 - ( Re ` S ) ) ) ) ) | 
						
							| 165 | 55 | a1i |  |-  ( ( ph /\ m e. NN0 ) -> 2 e. RR+ ) | 
						
							| 166 | 165 161 159 | cxpmuld |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( m x. ( 1 - ( Re ` S ) ) ) ) = ( ( 2 ^c m ) ^c ( 1 - ( Re ` S ) ) ) ) | 
						
							| 167 |  | simpr |  |-  ( ( ph /\ m e. NN0 ) -> m e. NN0 ) | 
						
							| 168 |  | cxpexp |  |-  ( ( 2 e. CC /\ m e. NN0 ) -> ( 2 ^c m ) = ( 2 ^ m ) ) | 
						
							| 169 | 81 167 168 | sylancr |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^c m ) = ( 2 ^ m ) ) | 
						
							| 170 |  | ax-1cn |  |-  1 e. CC | 
						
							| 171 | 64 | adantr |  |-  ( ( ph /\ m e. NN0 ) -> ( Re ` S ) e. CC ) | 
						
							| 172 |  | negsub |  |-  ( ( 1 e. CC /\ ( Re ` S ) e. CC ) -> ( 1 + -u ( Re ` S ) ) = ( 1 - ( Re ` S ) ) ) | 
						
							| 173 | 170 171 172 | sylancr |  |-  ( ( ph /\ m e. NN0 ) -> ( 1 + -u ( Re ` S ) ) = ( 1 - ( Re ` S ) ) ) | 
						
							| 174 | 173 | eqcomd |  |-  ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) = ( 1 + -u ( Re ` S ) ) ) | 
						
							| 175 | 169 174 | oveq12d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c m ) ^c ( 1 - ( Re ` S ) ) ) = ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) ) | 
						
							| 176 | 164 166 175 | 3eqtrd |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) ) | 
						
							| 177 | 58 | adantr |  |-  ( ( ph /\ m e. NN0 ) -> ( 1 - ( Re ` S ) ) e. RR ) | 
						
							| 178 | 165 177 162 | cxpmuld |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^c ( ( 1 - ( Re ` S ) ) x. m ) ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) ) | 
						
							| 179 |  | 2nn |  |-  2 e. NN | 
						
							| 180 |  | nnexpcl |  |-  ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) | 
						
							| 181 | 179 180 | mpan |  |-  ( m e. NN0 -> ( 2 ^ m ) e. NN ) | 
						
							| 182 | 181 | adantl |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) | 
						
							| 183 | 182 | nncnd |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. CC ) | 
						
							| 184 | 182 | nnne0d |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) =/= 0 ) | 
						
							| 185 |  | 1cnd |  |-  ( ( ph /\ m e. NN0 ) -> 1 e. CC ) | 
						
							| 186 | 42 | adantr |  |-  ( ( ph /\ m e. NN0 ) -> -u ( Re ` S ) e. CC ) | 
						
							| 187 | 183 184 185 186 | cxpaddd |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) ^c ( 1 + -u ( Re ` S ) ) ) = ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) | 
						
							| 188 | 176 178 187 | 3eqtr3d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) | 
						
							| 189 |  | cxpexp |  |-  ( ( ( 2 ^c ( 1 - ( Re ` S ) ) ) e. CC /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) | 
						
							| 190 | 61 189 | sylan |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^c m ) = ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) ) | 
						
							| 191 | 183 | cxp1d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) ^c 1 ) = ( 2 ^ m ) ) | 
						
							| 192 | 191 | oveq1d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( ( 2 ^ m ) ^c 1 ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) | 
						
							| 193 | 188 190 192 | 3eqtr3d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ m ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) | 
						
							| 194 | 179 167 180 | sylancr |  |-  ( ( ph /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) | 
						
							| 195 |  | oveq1 |  |-  ( n = ( 2 ^ m ) -> ( n ^c -u ( Re ` S ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) | 
						
							| 196 |  | ovex |  |-  ( ( 2 ^ m ) ^c -u ( Re ` S ) ) e. _V | 
						
							| 197 | 195 7 196 | fvmpt |  |-  ( ( 2 ^ m ) e. NN -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) | 
						
							| 198 | 194 197 | syl |  |-  ( ( ph /\ m e. NN0 ) -> ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) = ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) | 
						
							| 199 | 198 | oveq2d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( 2 ^ m ) x. ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) ) = ( ( 2 ^ m ) x. ( ( 2 ^ m ) ^c -u ( Re ` S ) ) ) ) | 
						
							| 200 | 193 91 199 | 3eqtr4d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ` m ) = ( ( 2 ^ m ) x. ( ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ` ( 2 ^ m ) ) ) ) | 
						
							| 201 | 100 102 157 200 | climcnds |  |-  ( ph -> ( seq 1 ( + , ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ) e. dom ~~> <-> seq 0 ( + , ( n e. NN0 |-> ( ( 2 ^c ( 1 - ( Re ` S ) ) ) ^ n ) ) ) e. dom ~~> ) ) | 
						
							| 202 | 96 201 | mpbird |  |-  ( ph -> seq 1 ( + , ( n e. NN |-> ( n ^c -u ( Re ` S ) ) ) ) e. dom ~~> ) | 
						
							| 203 | 4 5 52 54 202 | abscvgcvg |  |-  ( ph -> seq 1 ( + , F ) e. dom ~~> ) |