Step |
Hyp |
Ref |
Expression |
0 |
|
czs12 |
|- ZZ_s[1/2] |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
czs |
|- ZZ_s |
4 |
|
vz |
|- z |
5 |
|
cnn0s |
|- NN0_s |
6 |
1
|
cv |
|- x |
7 |
2
|
cv |
|- y |
8 |
|
cdivs |
|- /su |
9 |
|
c2s |
|- 2s |
10 |
|
cexps |
|- ^su |
11 |
4
|
cv |
|- z |
12 |
9 11 10
|
co |
|- ( 2s ^su z ) |
13 |
7 12 8
|
co |
|- ( y /su ( 2s ^su z ) ) |
14 |
6 13
|
wceq |
|- x = ( y /su ( 2s ^su z ) ) |
15 |
14 4 5
|
wrex |
|- E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) |
16 |
15 2 3
|
wrex |
|- E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) |
17 |
16 1
|
cab |
|- { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } |
18 |
0 17
|
wceq |
|- ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } |