Metamath Proof Explorer


Definition df-zs12

Description: Define the set of dyadic rationals. This is the set of rationals whose denominator is a power of two. Later we will prove that this is precisely the set of surreals with a finite birthday. (Contributed by Scott Fenton, 27-May-2025)

Ref Expression
Assertion df-zs12
|- ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 czs12
 |-  ZZ_s[1/2]
1 vx
 |-  x
2 vy
 |-  y
3 czs
 |-  ZZ_s
4 vz
 |-  z
5 cnn0s
 |-  NN0_s
6 1 cv
 |-  x
7 2 cv
 |-  y
8 cdivs
 |-  /su
9 c2s
 |-  2s
10 cexps
 |-  ^su
11 4 cv
 |-  z
12 9 11 10 co
 |-  ( 2s ^su z )
13 7 12 8 co
 |-  ( y /su ( 2s ^su z ) )
14 6 13 wceq
 |-  x = ( y /su ( 2s ^su z ) )
15 14 4 5 wrex
 |-  E. z e. NN0_s x = ( y /su ( 2s ^su z ) )
16 15 2 3 wrex
 |-  E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) )
17 16 1 cab
 |-  { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) }
18 0 17 wceq
 |-  ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) }