| Step |
Hyp |
Ref |
Expression |
| 0 |
|
czs12 |
|- ZZ_s[1/2] |
| 1 |
|
vx |
|- x |
| 2 |
|
vy |
|- y |
| 3 |
|
czs |
|- ZZ_s |
| 4 |
|
vz |
|- z |
| 5 |
|
cnn0s |
|- NN0_s |
| 6 |
1
|
cv |
|- x |
| 7 |
2
|
cv |
|- y |
| 8 |
|
cdivs |
|- /su |
| 9 |
|
c2s |
|- 2s |
| 10 |
|
cexps |
|- ^su |
| 11 |
4
|
cv |
|- z |
| 12 |
9 11 10
|
co |
|- ( 2s ^su z ) |
| 13 |
7 12 8
|
co |
|- ( y /su ( 2s ^su z ) ) |
| 14 |
6 13
|
wceq |
|- x = ( y /su ( 2s ^su z ) ) |
| 15 |
14 4 5
|
wrex |
|- E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) |
| 16 |
15 2 3
|
wrex |
|- E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) |
| 17 |
16 1
|
cab |
|- { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } |
| 18 |
0 17
|
wceq |
|- ZZ_s[1/2] = { x | E. y e. ZZ_s E. z e. NN0_s x = ( y /su ( 2s ^su z ) ) } |