Step |
Hyp |
Ref |
Expression |
0 |
|
czs12 |
⊢ ℤs[1/2] |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
|
czs |
⊢ ℤs |
4 |
|
vz |
⊢ 𝑧 |
5 |
|
cnn0s |
⊢ ℕ0s |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
2
|
cv |
⊢ 𝑦 |
8 |
|
cdivs |
⊢ /su |
9 |
|
c2s |
⊢ 2s |
10 |
|
cexps |
⊢ ↑s |
11 |
4
|
cv |
⊢ 𝑧 |
12 |
9 11 10
|
co |
⊢ ( 2s ↑s 𝑧 ) |
13 |
7 12 8
|
co |
⊢ ( 𝑦 /su ( 2s ↑s 𝑧 ) ) |
14 |
6 13
|
wceq |
⊢ 𝑥 = ( 𝑦 /su ( 2s ↑s 𝑧 ) ) |
15 |
14 4 5
|
wrex |
⊢ ∃ 𝑧 ∈ ℕ0s 𝑥 = ( 𝑦 /su ( 2s ↑s 𝑧 ) ) |
16 |
15 2 3
|
wrex |
⊢ ∃ 𝑦 ∈ ℤs ∃ 𝑧 ∈ ℕ0s 𝑥 = ( 𝑦 /su ( 2s ↑s 𝑧 ) ) |
17 |
16 1
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℤs ∃ 𝑧 ∈ ℕ0s 𝑥 = ( 𝑦 /su ( 2s ↑s 𝑧 ) ) } |
18 |
0 17
|
wceq |
⊢ ℤs[1/2] = { 𝑥 ∣ ∃ 𝑦 ∈ ℤs ∃ 𝑧 ∈ ℕ0s 𝑥 = ( 𝑦 /su ( 2s ↑s 𝑧 ) ) } |